Pairwise two-sample symmetry tests
pairwisePermutationSymmetry.RdConducts pairwise two-sample symmetry tests across groups.
Usage
pairwisePermutationSymmetry(
formula = NULL,
data = NULL,
x = NULL,
g = NULL,
b = NULL,
method = "fdr",
...
)Arguments
- formula
A formula indicating the measurement variable and the grouping variable. e.g. y ~ group | block.
- data
The data frame to use.
- x
The response variable as a vector.
- g
The grouping variable as a vector.
- b
The blocking variable as a vector.
- method
The p-value adjustment method to use for multiple tests. See
stats::p.adjust.- ...
Additional arguments passed to
coin::symmetry_test.
Details
The input should include either formula and data;
or x, g, and b.
This function is a wrapper for coin::symmetry_test,
passing pairwise groups to the function. It's critical to read
and understand the documentation for this function to understand
its use and options.
Note
The parsing of the formula is simplistic. The first variable on the left side is used as the measurement variable. The first variable on the right side is used for the grouping variable. The second variable on the right side is used for the blocking variable.
Author
Salvatore Mangiafico, mangiafico@njaes.rutgers.edu
Examples
data(BobBelcher)
BobBelcher$Instructor = factor( BobBelcher$Instructor,
levels = c("Linda Belcher", "Louise Belcher",
"Tina Belcher", "Bob Belcher",
"Gene Belcher"))
library(coin)
symmetry_test(Likert ~ Instructor | Rater, data= BobBelcher,
ytrafo = rank_trafo,
teststat = "quadratic")
#>
#> Asymptotic General Symmetry Test
#>
#> data: Likert by
#> Instructor (Linda Belcher, Louise Belcher, Tina Belcher, Bob Belcher, Gene Belcher)
#> stratified by Rater
#> chi-squared = 22.283, df = 4, p-value = 0.0001761
#>
PT = pairwisePermutationSymmetry(Likert ~ Instructor | Rater,
data = BobBelcher,
ytrafo = rank_trafo,
teststat = "quadratic",
method = "fdr")
PT
#> Comparison Stat p.value p.adjust
#> 1 Linda Belcher - Louise Belcher = 0 0.6761 0.4109 0.51360
#> 2 Linda Belcher - Tina Belcher = 0 0.008163 0.928 0.92800
#> 3 Linda Belcher - Bob Belcher = 0 5.912 0.01503 0.03210
#> 4 Linda Belcher - Gene Belcher = 0 6.778 0.00923 0.03210
#> 5 Louise Belcher - Tina Belcher = 0 0.8491 0.3568 0.50970
#> 6 Louise Belcher - Bob Belcher = 0 5.163 0.02307 0.03845
#> 7 Louise Belcher - Gene Belcher = 0 7.516 0.006117 0.03210
#> 8 Tina Belcher - Bob Belcher = 0 5.797 0.01605 0.03210
#> 9 Tina Belcher - Gene Belcher = 0 6.531 0.0106 0.03210
#> 10 Bob Belcher - Gene Belcher = 0 0.4737 0.4913 0.54590
cldList(comparison = PT$Comparison,
p.value = PT$p.adjust,
threshold = 0.05)
#> Group Letter MonoLetter
#> 1 LindaBelcher a a
#> 2 LouiseBelcher a a
#> 3 TinaBelcher a a
#> 4 BobBelcher b b
#> 5 GeneBelcher b b