Quantiles and confidence intervals
quantileCI.RdCalculates an estimate for a quantile and confidence intervals for a vector of discrete or continuous values
Arguments
- x
The vector of observations. Can be an ordered factor as long as
typeis 1 or 3.- tau
The quantile to use, e.g. 0.5 for median, 0.25 for 25th percentile.
- level
The confidence interval to use, e.g. 0.95 for 95 percent confidence interval.
- method
If
"binomial", uses the binomial distribution the confidence limits. If"normal", uses the normal approximation to the binomial distribution.- type
The
typevalue passed to thequantilefunction.- digits
The number of significant figures to use in output.
- ...
Other arguments, ignored.
Details
Conover recommends the "binomial" method for sample
sizes less than or equal to 20.
With the current implementation,
this method can be used also for
larger sample sizes.
References
https://rcompanion.org/handbook/E_04.html
Conover, W.J., Practical Nonparametric Statistics, 3rd.
Author
Salvatore Mangiafico, mangiafico@njaes.rutgers.edu
Examples
### From Conover, Practical Nonparametric Statistics, 3rd
Hours = c(46.9, 47.2, 49.1, 56.5, 56.8, 59.2, 59.9, 63.2,
63.3, 63.4, 63.7, 64.1, 67.1, 67.7, 73.3, 78.5)
quantileCI(Hours)
#> tau n Quantile Nominal.level Actual.level Lower.ci Upper.ci
#> 0.5 16 63.2 0.95 0.951 56.5 64.1
### Example with ordered factor
set.seed(12345)
Pool = factor(c("smallest", "small", "medium", "large", "largest"),
ordered=TRUE,
levels=c("smallest", "small", "medium", "large", "largest"))
Sample = sample(Pool, 24, replace=TRUE)
quantileCI(Sample)
#> tau n Quantile Nominal.level Actual.level Lower.ci Upper.ci
#> 0.5 24 medium 0.95 0.957 small large