step_date()
creates a specification of a recipe step that will convert
date data into one or more factor or numeric variables.
step_date(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,
ordinal = FALSE,
locale = clock::clock_locale()$labels,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("date")
)
A recipe object. The step will be added to the sequence of operations for this recipe.
One or more selector functions to choose variables for this step.
The selected variables should have class Date
or POSIXct
. See
selections()
for more details.
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
A logical to indicate if the quantities for preprocessing have been estimated.
A character string that includes at least one of the
following values: month
, dow
(day of week), mday
(day of month),
doy
(day of year), week
, month
, decimal
(decimal date, e.g.
2002.197), quarter
, semester
, year
.
A logical. Only available for features month
or dow
. FALSE
will display the day of the week as an ordered factor of character strings,
such as "Sunday". TRUE
will display an abbreviated version of the label,
such as "Sun". abbr
is disregarded if label = FALSE
.
A logical. Only available for features month
or dow
. TRUE
will display the day of the week as an ordered factor of character strings,
such as "Sunday." FALSE
will display the day of the week as a number.
A logical: should factors be ordered? Only available for
features month
or dow
.
Locale to be used for month
and dow
, see locales. On
Linux systems you can use system("locale -a")
to list all the installed
locales. Can be a locales string, or a clock::clock_labels()
object.
Defaults to clock::clock_locale()$labels
.
A character string of the selected variable names. This field
is a placeholder and will be populated once prep()
is used.
A logical to keep the original variables in the
output. Defaults to TRUE
.
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked when prep()
is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE
as it
may affect the computations for subsequent operations.
A character string that is unique to this step to identify it.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Unlike some other steps, step_date()
does not remove the original date
variables by default. Set keep_original_cols
to FALSE
to remove them.
See step_time()
if you want to calculate features that are smaller than
days.
When you tidy()
this step, a tibble is returned with
columns terms
, value
, ordinal
, and id
:
character, the selectors or variables selected
character, the feature names
logical, are factors ordered
character, id of this step
The underlying operation does not allow for case weights.
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_other()
,
step_regex()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
library(lubridate)
#>
#> Attaching package: ‘lubridate’
#> The following objects are masked from ‘package:base’:
#>
#> date, intersect, setdiff, union
examples <- data.frame(
Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10)
)
date_rec <- recipe(~ Dan + Stefan, examples) |>
step_date(all_predictors())
tidy(date_rec, number = 1)
#> # A tibble: 3 × 4
#> terms value ordinal id
#> <chr> <chr> <lgl> <chr>
#> 1 all_predictors() dow FALSE date_vUNsj
#> 2 all_predictors() month FALSE date_vUNsj
#> 3 all_predictors() year FALSE date_vUNsj
date_rec <- prep(date_rec, training = examples)
date_values <- bake(date_rec, new_data = examples)
date_values
#> # A tibble: 10 × 8
#> Dan Stefan Dan_dow Dan_month Dan_year Stefan_dow Stefan_month
#> <date> <date> <fct> <fct> <int> <fct> <fct>
#> 1 2002-03-05 2006-01-14 Tue Mar 2002 Sat Jan
#> 2 2002-03-06 2006-01-15 Wed Mar 2002 Sun Jan
#> 3 2002-03-07 2006-01-16 Thu Mar 2002 Mon Jan
#> 4 2002-03-08 2006-01-17 Fri Mar 2002 Tue Jan
#> 5 2002-03-09 2006-01-18 Sat Mar 2002 Wed Jan
#> 6 2002-03-10 2006-01-19 Sun Mar 2002 Thu Jan
#> 7 2002-03-11 2006-01-20 Mon Mar 2002 Fri Jan
#> 8 2002-03-12 2006-01-21 Tue Mar 2002 Sat Jan
#> 9 2002-03-13 2006-01-22 Wed Mar 2002 Sun Jan
#> 10 2002-03-14 2006-01-23 Thu Mar 2002 Mon Jan
#> # ℹ 1 more variable: Stefan_year <int>
tidy(date_rec, number = 1)
#> # A tibble: 6 × 4
#> terms value ordinal id
#> <chr> <chr> <lgl> <chr>
#> 1 Dan dow FALSE date_vUNsj
#> 2 Dan month FALSE date_vUNsj
#> 3 Dan year FALSE date_vUNsj
#> 4 Stefan dow FALSE date_vUNsj
#> 5 Stefan month FALSE date_vUNsj
#> 6 Stefan year FALSE date_vUNsj