step_log()
creates a specification of a recipe step that will log
transform data.
A recipe object. The step will be added to the sequence of operations for this recipe.
One or more selector functions to choose variables for this step.
See selections()
for more details.
Not used by this step since no new variables are created.
A logical to indicate if the quantities for preprocessing have been estimated.
A numeric value for the base.
An optional value to add to the data prior to logging (to avoid
log(0)
).
A character string of the selected variable names. This field
is a placeholder and will be populated once prep()
is used.
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked when prep()
is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE
as it
may affect the computations for subsequent operations.
A logical indicating whether to take the signed log. This is
sign(x) * log(abs(x))
when abs(x) => 1
or 0 if abs(x) < 1
. If TRUE
the offset
argument will be ignored.
A character string that is unique to this step to identify it.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
When you tidy()
this step, a tibble is returned with
columns terms
, base
, and id
:
character, the selectors or variables selected
numeric, value for the base
character, id of this step
The underlying operation does not allow for case weights.
Other individual transformation steps:
step_BoxCox()
,
step_YeoJohnson()
,
step_bs()
,
step_harmonic()
,
step_hyperbolic()
,
step_inverse()
,
step_invlogit()
,
step_logit()
,
step_mutate()
,
step_ns()
,
step_percentile()
,
step_poly()
,
step_relu()
,
step_sqrt()
set.seed(313)
examples <- matrix(exp(rnorm(40)), ncol = 2)
examples <- as.data.frame(examples)
rec <- recipe(~ V1 + V2, data = examples)
log_trans <- rec |>
step_log(all_numeric_predictors())
log_obj <- prep(log_trans, training = examples)
transformed_te <- bake(log_obj, examples)
plot(examples$V1, transformed_te$V1)
tidy(log_trans, number = 1)
#> # A tibble: 1 × 3
#> terms base id
#> <chr> <dbl> <chr>
#> 1 all_numeric_predictors() 2.72 log_IhS7o
tidy(log_obj, number = 1)
#> # A tibble: 2 × 3
#> terms base id
#> <chr> <dbl> <chr>
#> 1 V1 2.72 log_IhS7o
#> 2 V2 2.72 log_IhS7o
# using the signed argument with negative values
examples2 <- matrix(rnorm(40, sd = 5), ncol = 2)
examples2 <- as.data.frame(examples2)
recipe(~ V1 + V2, data = examples2) |>
step_log(all_numeric_predictors()) |>
prep(training = examples2) |>
bake(examples2)
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> # A tibble: 20 × 2
#> V1 V2
#> <dbl> <dbl>
#> 1 -0.209 NaN
#> 2 1.71 NaN
#> 3 1.12 1.06
#> 4 1.65 1.19
#> 5 NaN 2.18
#> 6 1.15 1.08
#> 7 NaN 0.555
#> 8 0.102 NaN
#> 9 0.670 1.37
#> 10 NaN 1.02
#> 11 NaN NaN
#> 12 NaN NaN
#> 13 NaN NaN
#> 14 1.25 -0.0880
#> 15 2.21 0.774
#> 16 NaN NaN
#> 17 NaN 2.49
#> 18 NaN 1.47
#> 19 NaN NaN
#> 20 NaN NaN
recipe(~ V1 + V2, data = examples2) |>
step_log(all_numeric_predictors(), signed = TRUE) |>
prep(training = examples2) |>
bake(examples2)
#> # A tibble: 20 × 2
#> V1 V2
#> <dbl> <dbl>
#> 1 0 -1.24
#> 2 1.71 -1.81
#> 3 1.12 1.06
#> 4 1.65 1.19
#> 5 -1.63 2.18
#> 6 1.15 1.08
#> 7 -0.604 0.555
#> 8 0.102 -0.565
#> 9 0.670 1.37
#> 10 -2.65 1.02
#> 11 -1.34 -1.04
#> 12 -2.06 -1.51
#> 13 -0.613 -1.75
#> 14 1.25 0
#> 15 2.21 0.774
#> 16 -1.90 -0.0814
#> 17 -0.762 2.49
#> 18 -1.40 1.47
#> 19 -1.22 -0.825
#> 20 -1.20 -2.27