step_normalize()
creates a specification of a recipe step that will
normalize numeric data to have a standard deviation of one and a mean of
zero.
step_normalize(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
sds = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("normalize")
)
A recipe object. The step will be added to the sequence of operations for this recipe.
One or more selector functions to choose variables for this step.
See selections()
for more details.
Not used by this step since no new variables are created.
A logical to indicate if the quantities for preprocessing have been estimated.
A named numeric vector of means. This is NULL
until computed
by prep()
.
A named numeric vector of standard deviations This is NULL
until
computed by prep()
.
A logical value indicating whether NA
values should be removed
when computing the standard deviation and mean.
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked when prep()
is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE
as it
may affect the computations for subsequent operations.
A character string that is unique to this step to identify it.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Centering data means that the average of a variable is subtracted from the
data. Scaling data means that the standard deviation of a variable is divided
out of the data. step_normalize()
estimates the variable standard
deviations and means from the data used in the training
argument of
prep()
. bake()
then applies the scaling to new data sets using these
estimates.
When you tidy()
this step, a tibble is returned with
columns terms
, statistic
, value
, and id
:
character, the selectors or variables selected
character, name of statistic ("mean"
or "sd"
)
numeric, value of the statistic
character, id of this step
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in case_weights and the examples on
tidymodels.org
.
Other normalization steps:
step_center()
,
step_range()
,
step_scale()
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
norm_trans <- rec |>
step_normalize(carbon, hydrogen)
norm_obj <- prep(norm_trans, training = biomass_tr)
transformed_te <- bake(norm_obj, biomass_te)
biomass_te[1:10, names(transformed_te)]
#> carbon hydrogen oxygen nitrogen sulfur HHV
#> 15 46.35 5.67 47.20 0.30 0.22 18.275
#> 20 43.25 5.50 48.06 2.85 0.34 17.560
#> 26 42.70 5.50 49.10 2.40 0.30 17.173
#> 31 46.40 6.10 37.30 1.80 0.50 18.851
#> 36 48.76 6.32 42.77 0.20 0.00 20.547
#> 41 44.30 5.50 41.70 0.70 0.20 18.467
#> 46 38.94 5.23 54.13 1.19 0.51 15.095
#> 51 42.10 4.66 33.80 0.95 0.20 16.240
#> 55 29.20 4.40 31.10 0.14 4.90 11.147
#> 65 27.80 3.77 23.69 4.63 1.05 10.750
transformed_te
#> # A tibble: 80 × 6
#> carbon hydrogen oxygen nitrogen sulfur HHV
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.193 0.176 47.2 0.3 0.22 18.3
#> 2 -0.490 0.0342 48.1 2.85 0.34 17.6
#> 3 -0.543 0.0342 49.1 2.4 0.3 17.2
#> 4 -0.188 0.535 37.3 1.8 0.5 18.9
#> 5 0.0390 0.719 42.8 0.2 0 20.5
#> 6 -0.390 0.0342 41.7 0.7 0.2 18.5
#> 7 -0.904 -0.191 54.1 1.19 0.51 15.1
#> 8 -0.601 -0.668 33.8 0.95 0.2 16.2
#> 9 -1.84 -0.885 31.1 0.14 4.9 11.1
#> 10 -1.97 -1.41 23.7 4.63 1.05 10.8
#> # ℹ 70 more rows
tidy(norm_trans, number = 1)
#> # A tibble: 2 × 4
#> terms statistic value id
#> <chr> <chr> <dbl> <chr>
#> 1 carbon NA NA normalize_hS7oa
#> 2 hydrogen NA NA normalize_hS7oa
tidy(norm_obj, number = 1)
#> # A tibble: 4 × 4
#> terms statistic value id
#> <chr> <chr> <dbl> <chr>
#> 1 carbon mean 48.4 normalize_hS7oa
#> 2 hydrogen mean 5.46 normalize_hS7oa
#> 3 carbon sd 10.4 normalize_hS7oa
#> 4 hydrogen sd 1.20 normalize_hS7oa
# To keep the original variables in the output, use `step_mutate_at`:
norm_keep_orig <- rec |>
step_mutate_at(all_numeric_predictors(), fn = list(orig = ~.)) |>
step_normalize(-contains("orig"), -all_outcomes())
keep_orig_obj <- prep(norm_keep_orig, training = biomass_tr)
keep_orig_te <- bake(keep_orig_obj, biomass_te)
keep_orig_te
#> # A tibble: 80 × 11
#> carbon hydrogen oxygen nitrogen sulfur HHV carbon_orig hydrogen_orig
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.193 0.176 0.801 -0.643 0.00755 18.3 46.4 5.67
#> 2 -0.490 0.0342 0.881 1.47 0.281 17.6 43.2 5.5
#> 3 -0.543 0.0342 0.977 1.10 0.190 17.2 42.7 5.5
#> 4 -0.188 0.535 -0.113 0.602 0.646 18.9 46.4 6.1
#> 5 0.0390 0.719 0.392 -0.726 -0.494 20.5 48.8 6.32
#> 6 -0.390 0.0342 0.293 -0.311 -0.0380 18.5 44.3 5.5
#> 7 -0.904 -0.191 1.44 0.0958 0.668 15.1 38.9 5.23
#> 8 -0.601 -0.668 -0.436 -0.103 -0.0380 16.2 42.1 4.66
#> 9 -1.84 -0.885 -0.686 -0.776 10.7 11.1 29.2 4.4
#> 10 -1.97 -1.41 -1.37 2.95 1.90 10.8 27.8 3.77
#> # ℹ 70 more rows
#> # ℹ 3 more variables: oxygen_orig <dbl>, nitrogen_orig <dbl>, sulfur_orig <dbl>