All functions

ExProb() plot(<ExProb>) Survival(<orm>)

Function Generators For Exceedance and Survival Probabilities

Function(<rms>) Function(<cph>) sascode() perlcode()

Compose an S Function to Compute X beta from a Fit

Glm()

rms Version of glm

Gls() print(<Gls>)

Fit Linear Model Using Generalized Least Squares

LRupdate()

LRupdate

Ocens()

Censored Ordinal Variable

Ocens2Surv()

Ocens2Surv

Ocens2ord()

Recode Censored Ordinal Variable

Olinks()

Likehood-Based Statistics for Other Links for orm Fits

Predict() print(<Predict>) rbind(<Predict>)

Compute Predicted Values and Confidence Limits

Punits()

Prepare units for Printing and Plotting

Rq() print(<Rq>) latex(<Rq>) predict(<Rq>) RqFit()

rms Package Interface to quantreg Package

Xcontrast()

Xcontrast

adapt_orm()

Adaptive orm Fit For a Single Continuous Predictor

anova(<rms>) print(<anova.rms>) plot(<anova.rms>) latex(<anova.rms>) html(<anova.rms>)

Analysis of Variance (Wald, LR, and F Statistics)

as.data.frame(<Ocens>)

Convert `Ocens` Object to Data Frame to Facilitate Subset

bj() print(<bj>) residuals(<bj>) bjplot() validate(<bj>) bj.fit()

Buckley-James Multiple Regression Model

bootBCa()

BCa Bootstrap on Existing Bootstrap Replicates

bootcov() bootplot() confplot() histdensity()

Bootstrap Covariance and Distribution for Regression Coefficients

bplot() perimeter()

3-D Plots Showing Effects of Two Continuous Predictors in a Regression Model Fit

calibrate() print(<calibrate>) print(<calibrate.default>) plot(<calibrate>) plot(<calibrate.default>)

Resampling Model Calibration

contrast() print(<contrast.rms>)

General Contrasts of Regression Coefficients

cph() Survival(<cph>) Quantile(<cph>) Mean(<cph>)

Cox Proportional Hazards Model and Extensions

cr.setup()

Continuation Ratio Ordinal Logistic Setup

datadist() print(<datadist>)

Distribution Summaries for Predictor Variables

fastbw() print(<fastbw>)

Fast Backward Variable Selection

gIndex() print(<gIndex>) plot(<gIndex>)

Calculate Total and Partial g-indexes for an rms Fit

gendata()

Generate Data Frame with Predictor Combinations

ggplot(<Predict>)

Plot Effects of Variables Estimated by a Regression Model Fit Using ggplot2

ggplot(<npsurv>)

Title Plot npsurv Nonparametric Survival Curves Using ggplot2

groupkm()

Kaplan-Meier Estimates vs. a Continuous Variable

hazard.ratio.plot()

Hazard Ratio Plot

ie.setup()

Intervening Event Setup

impactPO()

Impact of Proportional Odds Assumpton

Surv() ggplot()

Exported Functions That Were Imported From Other Packages

infoMxop()

Operate on Information Matrices

intCalibration()

Check Parallelism Assumption of Ordinal Semiparametric Models

is.na(<Ocens>)

is.na Method for Ocens Objects

latex(<cph>) latex(<lrm>) latex(<ols>) latex(<orm>) latex(<pphsm>) latex(<psm>)

LaTeX Representation of a Fitted Cox Model

latexrms()

LaTeX Representation of a Fitted Model

lrm() print(<lrm>)

Logistic Regression Model

lrm.fit()

lrm.fit

matinv()

Total and Partial Matrix Inversion using Gauss-Jordan Sweep Operator

nomogram() print(<nomogram>) plot(<nomogram>) legend.nomabbrev()

Draw a Nomogram Representing a Regression Fit

npsurv()

Nonparametric Survival Estimates for Censored Data

ols()

Linear Model Estimation Using Ordinary Least Squares

ordESS()

ordESS

ordParallel()

Check Parallelism Assumption of Ordinal Semiparametric Models

orm() print(<orm>) Quantile(<orm>)

Ordinal Regression Model

orm.fit()

Ordinal Regression Model Fitter

pentrace() effective.df() print(<pentrace>) plot(<pentrace>)

Trace AIC and BIC vs. Penalty

plot(<Predict>) pantext()

Plot Effects of Variables Estimated by a Regression Model Fit

plot(<contrast.rms>)

plot.contrast.rms

plot(<rexVar>)

plot.rexVar

plot(<xmean.ordinaly>)

Plot Mean X vs. Ordinal Y

plotIntercepts()

Plot Intercepts

plotp(<Predict>)

Plot Effects of Variables Estimated by a Regression Model Fit Using plotly

poma()

Examine proportional odds and parallelism assumptions of `orm` and `lrm` model fits.

pphsm() print(<pphsm>) vcov(<pphsm>)

Parametric Proportional Hazards form of AFT Models

predab.resample()

Predictive Ability using Resampling

predict(<lrm>) predict(<orm>) Mean(<lrm>) Mean(<orm>)

Predicted Values for Binary and Ordinal Logistic Models

predictrms() predict(<bj>) predict(<cph>) predict(<Glm>) predict(<Gls>) predict(<ols>) predict(<psm>)

Predicted Values from Model Fit

print(<Glm>)

print.glm

print(<Ocens>)

print Method for Ocens Objects

print(<cph>)

Print cph Results

print(<impactPO>)

Print Result from impactPO

print(<ols>)

Print ols

print(<rexVar>)

print.rexVar

prmiInfo()

prmiInfo

processMI()

processMI

processMI(<fit.mult.impute>)

processMI.fit.mult.impute

psm() print(<psm>) Hazard() Survival() Quantile(<psm>) Mean(<psm>) residuals(<psm>) survplot(<residuals.psm.censored.normalized>) lines(<residuals.psm.censored.normalized>)

Parametric Survival Model

recode2integer()

recode2integer

residuals(<Glm>)

residuals.Glm

residuals(<cph>)

Residuals for a cph Fit

residuals(<lrm>) residuals(<orm>) plot(<lrm.partial>)

Residuals from an lrm or orm Fit

residuals(<ols>)

Residuals for ols

rexVar()

rexVar

modelData() Design()

rms Methods and Generic Functions

asis() matrx() pol() lsp() rcs() catg() scored() strat() gTrans() `%ia%` makepredictcall(<rms>)

rms Special Transformation Functions

vcov(<rms>) vcov(<cph>) vcov(<Glm>) vcov(<Gls>) vcov(<lrm>) vcov(<ols>) vcov(<orm>) vcov(<psm>) DesignAssign() oos.loglik() Getlim() Getlimi() related.predictors() interactions.containing() combineRelatedPredictors() param.order() Penalty.matrix() Penalty.setup() logLik(<Gls>) logLik(<ols>) logLik(<rms>) AIC(<rms>) nobs(<rms>) lrtest() print(<lrtest>) univarLR() Newlabels() Newlevels() prModFit() prStats() reListclean() formatNP() latex(<naprint.delete>) html(<naprint.delete>) removeFormulaTerms()

Miscellaneous Design Attributes and Utility Functions

robcov()

Robust Covariance Matrix Estimates

sensuc() plot(<sensuc>)

Sensitivity to Unmeasured Covariables

setPb()

Progress Bar for Simulations

specs() print(<specs.rms>)

rms Specifications for Models

`[`(<Ocens>)

Ocens

summary(<rms>) print(<summary.rms>) latex(<summary.rms>) html(<summary.rms>) plot(<summary.rms>)

Summary of Effects in Model

survest()

Cox Survival Estimates

survest(<orm>)

Title survest.orm

survest(<psm>) print(<survest.psm>)

Parametric Survival Estimates

survfit(<cph>)

Cox Predicted Survival

survplot() survplotp() survdiffplot()

Plot Survival Curves and Hazard Functions

survplot(<orm>)

Title Survival Curve Plotting

val.prob() print(<val.prob>) plot(<val.prob>)

Validate Predicted Probabilities

val.surv() print(<val.survh>) plot(<val.survh>) plot(<val.surv>)

Validate Predicted Probabilities Against Observed Survival Times

validate() print(<validate>) latex(<validate>) html(<validate>)

Resampling Validation of a Fitted Model's Indexes of Fit

validate(<Rq>)

Validation of a Quantile Regression Model

validate(<cph>) validate(<psm>) dxy.cens()

Validation of a Fitted Cox or Parametric Survival Model's Indexes of Fit

validate(<lrm>) validate(<orm>)

Resampling Validation of a Logistic or Ordinal Regression Model

validate(<ols>)

Validation of an Ordinary Linear Model

validate(<rpart>) print(<validate.rpart>) plot(<validate.rpart>)

Dxy and Mean Squared Error by Cross-validating a Tree Sequence

vif()

Variance Inflation Factors

which.influence() show.influence()

Which Observations are Influential

rmsOverview rms.Overview

Overview of rms Package