Data set issued from a study of the adverse events of a drug on 117 patients affected by Crohn's disease (a chronic inflammatory disease of the intestines).

data(CrohnD, package="robustbase")

Format

A data frame with 117 observations on the following 9 variables.

%% FIXME: leave these away -- or explain: -- they code patient sub-groups
ID

the numeric patient IDs

nrAdvE

the number of adverse events

BMI

Body MASS Index, i.e., \(weight[kg] / (height[m])^2\).

height

in cm

country

a factor with levels 0 and 1

sex

the person's gender, a binary factor with levels M F

age

in years, a numeric vector

weight

in kilograms, a numeric vector

treat

how CD was treated: a factor with levels 0, 1 and 2, meaning placebo, drug 1 and drug 2.

Source

form the authors of the reference, with permission by the original data collecting agency.

References

Serigne N. Lô and Elvezio Ronchetti (2006). Robust Second Order Accurate Inference for Generalized Linear Models. Technical report, University of Geneva, Switzerland.

Examples

data(CrohnD)
str(CrohnD)
#> 'data.frame':	117 obs. of  9 variables:
#>  $ ID     : int  19908 19909 19910 20908 20909 20910 21908 21909 21910 21911 ...
#>  $ nrAdvE : int  4 4 1 1 2 2 3 0 1 0 ...
#>  $ BMI    : num  25.2 23.8 23.1 25.7 25.9 ...
#>  $ height : int  163 164 164 165 170 168 161 168 154 157 ...
#>  $ country: Factor w/ 2 levels "c1","c2": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ sex    : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ age    : int  47 53 68 48 67 54 53 53 47 58 ...
#>  $ weight : int  67 64 62 70 75 81 69 74 76 82 ...
#>  $ treat  : Factor w/ 3 levels "placebo","d1",..: 1 2 1 3 1 2 2 1 3 1 ...
with(CrohnD, ftable(table(sex,country, treat)))
#>             treat placebo d1 d2
#> sex country                    
#> M   c1                  5  5  3
#>     c2                  2  0  2
#> F   c1                 21 21 23
#>     c2                 11 13 11