delivery.RdDelivery Time Data, from Montgomery and Peck (1982). The aim is to explain the time required to service a vending machine (Y) by means of the number of products stocked (X1) and the distance walked by the route driver (X2).
data(delivery, package="robustbase")A data frame with 25 observations on the following 3 variables.
n.prodNumber of Products
distanceDistance
delTimeDelivery time
Montgomery and Peck (1982, p.116)
P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, page 155, table 23.
data(delivery)
summary(lm.deli <- lm(delTime ~ ., data = delivery))
#>
#> Call:
#> lm(formula = delTime ~ ., data = delivery)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -5.7880 -0.6629 0.4364 1.1566 7.4197
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.341231 1.096730 2.135 0.044170 *
#> n.prod 1.615907 0.170735 9.464 3.25e-09 ***
#> distance 0.014385 0.003613 3.981 0.000631 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 3.259 on 22 degrees of freedom
#> Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
#> F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
#>
delivery.x <- as.matrix(delivery[, 1:2])
c_deli <- covMcd(delivery.x)
c_deli
#> Minimum Covariance Determinant (MCD) estimator approximation.
#> Method: Fast MCD(alpha=0.5 ==> h=14); nsamp = 500; (n,k)mini = (300,5)
#> Call:
#> covMcd(x = delivery.x)
#> Log(Det.): 10.81
#>
#> Robust Estimate of Location:
#> n.prod distance
#> 5.895 268.053
#> Robust Estimate of Covariance:
#> n.prod distance
#> n.prod 7.072 133.9
#> distance 133.915 32279.1