Skip to contents

Provide an overview over all datasets available by data() in a (list of) given R packages.

Usage

str_data(pkgs, filterFUN, ...)

Arguments

pkgs

character vector of names of R packages.

filterFUN

optionally a logical function for filtering the R objects.

...

potentical further arguments to be passed to str; str(utils:::str.default) gives useful list.

Value

invisibly (see invisible) a list with named components matching the pkgs argument. Each of these components is a named list with one entry per data(.) argument name. Each entry is a character vector of the names of all objects, typically only one.

The side effect is, as with str(), to print everything (via cat) to the console.

Author

Martin Maechler

See also

Examples

str_data("cluster")
#> 
#> All data sets in R package 'cluster' :
#> --------------------------  =======
#> 
#> agriculture : 'data.frame':	12 obs. of  2 variables:
#>  $ x: num  16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21 16.4 ...
#>  $ y: num  2.7 5.7 3.5 22.2 10.9 6 14 8.5 3.5 4.3 ...
#> --------------
#> animals : 'data.frame':	20 obs. of  6 variables:
#>  $ war: int  1 1 2 1 2 2 2 2 2 1 ...
#>  $ fly: int  1 2 1 1 1 1 2 2 1 2 ...
#>  $ ver: int  1 1 2 1 2 2 2 2 2 1 ...
#>  $ end: int  1 1 1 1 2 1 1 2 2 1 ...
#>  $ gro: int  2 2 1 1 2 2 2 1 2 1 ...
#>  $ hai: int  1 2 2 2 2 2 1 1 1 1 ...
#> --------------
#> chorSub :  int [1:61, 1:10] 101 50 5 -40 -13 -49 44 285 4 -48 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : chr [1:61] "190" "191" "192" "193" ...
#>   ..$ : chr [1:10] "Al" "Ca" "Fe" "K" ...
#> --------------
#> flower : 'data.frame':	18 obs. of  8 variables:
#>  $ V1: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 2 2 ...
#>  $ V2: Factor w/ 2 levels "0","1": 2 1 2 1 2 2 1 1 2 2 ...
#>  $ V3: Factor w/ 2 levels "0","1": 2 1 1 2 1 1 1 2 1 1 ...
#>  $ V4: Factor w/ 5 levels "1","2","3","4",..: 4 2 3 4 5 4 4 2 3 5 ...
#>  $ V5: Ord.factor w/ 3 levels "1"<"2"<"3": 3 1 3 2 2 3 3 2 1 2 ...
#>  $ V6: Ord.factor w/ 18 levels "1"<"2"<"3"<"4"<..: 15 3 1 16 2 12 13 7 4 14 ...
#>  $ V7: num  25 150 150 125 20 50 40 100 25 100 ...
#>  $ V8: num  15 50 50 50 15 40 20 15 15 60 ...
#> --------------
#> plantTraits : 'data.frame':	136 obs. of  31 variables:
#>  $ pdias    : num  96.84 110.72 0.06 0.08 1.48 ...
#>  $ longindex: num  0 0 0.667 0.489 0.476 ...
#>  $ durflow  : int  2 3 3 2 3 3 3 3 3 3 ...
#>  $ height   : Ord.factor w/ 8 levels "1"<"2"<"3"<"4"<..: 7 8 2 2 2 5 2 2 3 2 ...
#>  $ begflow  : Ord.factor w/ 9 levels "1"<"2"<"3"<"4"<..: 5 4 6 7 5 4 6 3 7 4 ...
#>  $ mycor    : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 2 3 1 3 3 3 3 ...
#>  $ vegaer   : Ord.factor w/ 3 levels "0"<"1"<"2": 1 1 1 3 3 1 1 1 1 1 ...
#>  $ vegsout  : Ord.factor w/ 3 levels "0"<"1"<"2": 1 1 2 1 1 1 1 3 1 1 ...
#>  $ autopoll : Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 1 1 2 4 4 2 1 3 ...
#>  $ insects  : Ord.factor w/ 5 levels "0"<"1"<"2"<"3"<..: 5 5 1 1 4 4 3 4 4 1 ...
#>  $ wind     : Ord.factor w/ 5 levels "0"<"1"<"2"<"3"<..: 1 1 5 5 1 1 1 1 1 4 ...
#>  $ lign     : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ piq      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ ros      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ semiros  : Factor w/ 2 levels "0","1": 1 1 1 1 2 2 1 2 2 1 ...
#>  $ leafy    : Factor w/ 2 levels "0","1": 2 2 2 2 1 1 2 1 1 2 ...
#>  $ suman    : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 2 1 1 1 ...
#>  $ winan    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
#>  $ monocarp : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 2 1 ...
#>  $ polycarp : Factor w/ 2 levels "0","1": 2 2 2 2 2 1 1 2 2 2 ...
#>  $ seasaes  : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 2 1 ...
#>  $ seashiv  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
#>  $ seasver  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
#>  $ everalw  : Factor w/ 2 levels "0","1": 1 1 2 2 2 1 1 1 1 2 ...
#>  $ everparti: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
#>  $ elaio    : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
#>  $ endozoo  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ epizoo   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 2 ...
#>  $ aquat    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 2 1 ...
#>  $ windgl   : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ unsp     : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 2 1 1 1 ...
#> --------------
#> pluton : 'data.frame':	45 obs. of  4 variables:
#>  $ Pu238: num  0.126 0.133 0.127 0.156 0.503 ...
#>  $ Pu239: num  75.8 75.5 75.2 78.9 73.3 ...
#>  $ Pu240: num  21.2 21.4 21.7 18.4 20.2 ...
#>  $ Pu241: num  2.18 2.24 2.31 1.91 4.13 ...
#> --------------
#> ruspini : 'data.frame':	75 obs. of  2 variables:
#>  $ x: int  4 5 10 9 13 13 12 15 18 19 ...
#>  $ y: int  53 63 59 77 49 69 88 75 61 65 ...
#> --------------
#> votes.repub : 'data.frame':	50 obs. of  31 variables:
#>  $ X1856: num  NA NA NA NA 18.8 ...
#>  $ X1860: num  NA NA NA NA 33 ...
#>  $ X1864: num  NA NA NA NA 58.6 ...
#>  $ X1868: num  51.4 NA NA 53.7 50.2 ...
#>  $ X1872: num  53.2 NA NA 52.2 56.4 ...
#>  $ X1876: num  40 NA NA 39.9 50.9 ...
#>  $ X1880: num  37 NA NA 39.5 48.9 ...
#>  $ X1884: num  38.4 NA NA 40.5 52.1 ...
#>  $ X1888: num  32.3 NA NA 38.1 50 ...
#>  $ X1892: num  3.95 NA NA 32.01 43.76 ...
#>  $ X1896: num  28.1 NA NA 25.1 49.1 ...
#>  $ X1900: num  34.7 NA NA 35 54.5 ...
#>  $ X1904: num  20.6 NA NA 40.2 61.9 ...
#>  $ X1908: num  24.4 NA NA 37.3 55.5 ...
#>  $ X1912: num  8.26 NA 12.74 19.73 0.58 ...
#>  $ X1916: num  22 NA 35.4 28 46.3 ...
#>  $ X1920: num  31 NA 55.4 38.7 66.2 ...
#>  $ X1924: num  27 NA 41.3 29.3 57.2 ...
#>  $ X1928: num  48.5 NA 57.6 39.3 64.7 ...
#>  $ X1932: num  14.2 NA 30.5 12.9 37.4 ...
#>  $ X1936: num  12.8 NA 26.9 17.9 31.7 ...
#>  $ X1940: num  14.3 NA 36 20.9 41.4 ...
#>  $ X1944: num  18.2 NA 40.9 29.8 43 ...
#>  $ X1948: num  19 NA 43.8 21 47.1 ...
#>  $ X1952: num  35 NA 58.4 43.8 56.4 ...
#>  $ X1956: num  39.4 NA 61 45.8 55.4 ...
#>  $ X1960: num  41.8 50.9 55.5 43.1 50.1 ...
#>  $ X1964: num  69.5 34.1 50.4 43.9 40.9 38.7 32.2 39.1 48.9 54.1 ...
#>  $ X1968: num  14 45.3 54.8 30.8 47.8 50.5 44.3 45.1 40.5 30.4 ...
#>  $ X1972: num  72.4 58.1 64.7 68.9 55 62.6 58.6 59.6 71.9 75 ...
#>  $ X1976: num  43.5 62.9 58.6 35 50.9 ...
#> --------------
#> xclara : 'data.frame':	3000 obs. of  2 variables:
#>  $ V1: num  2.07 17.94 1.08 11.12 23.71 ...
#>  $ V2: num  -3.24 15.78 7.32 14.41 2.56 ...
#> --------------

str_data("datasets", max=0, give.attr = FALSE)
#> 
#> All data sets in R package 'datasets' :
#> --------------------------  ========
#> 
#> AirPassengers :  Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
#> --------------
#> BJsales : 
#>   BJsales :  Time-Series [1:150] from 1 to 150: 200 200 199 199 199 ...
#>   BJsales.lead :  Time-Series [1:150] from 1 to 150: 10.01 10.07 10.32 9.75 10.33 ...
#> --------------
#> BOD : 'data.frame':	6 obs. of  2 variables:
#> --------------
#> CO2 : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	84 obs. of  5 variables:
#> --------------
#> ChickWeight : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	578 obs. of  4 variables:
#> --------------
#> DNase : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	176 obs. of  3 variables:
#> --------------
#> EuStockMarkets :  Time-Series [1:1860, 1:4] from 1991 to 1999: 1629 1614 1607 1621 1618 ...
#> --------------
#> Formaldehyde : 'data.frame':	6 obs. of  2 variables:
#> --------------
#> HairEyeColor :  'table' num [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
#> --------------
#> Harman23.cor : List of 3
#> --------------
#> Harman74.cor : List of 3
#> --------------
#> Indometh : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	66 obs. of  3 variables:
#> --------------
#> InsectSprays : 'data.frame':	72 obs. of  2 variables:
#> --------------
#> JohnsonJohnson :  Time-Series [1:84] from 1960 to 1981: 0.71 0.63 0.85 0.44 0.61 0.69 0.92 0.55 0.72 0.77 ...
#> --------------
#> LakeHuron :  Time-Series [1:98] from 1875 to 1972: 580 582 581 581 580 ...
#> --------------
#> LifeCycleSavings : 'data.frame':	50 obs. of  5 variables:
#> --------------
#> Loblolly : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	84 obs. of  3 variables:
#> --------------
#> Nile :  Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370 1140 ...
#> --------------
#> Orange : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	35 obs. of  3 variables:
#> --------------
#> OrchardSprays : 'data.frame':	64 obs. of  4 variables:
#> --------------
#> PlantGrowth : 'data.frame':	30 obs. of  2 variables:
#> --------------
#> Puromycin : 'data.frame':	23 obs. of  3 variables:
#> --------------
#> Seatbelts :  Time-Series [1:192, 1:8] from 1969 to 1985: 107 97 102 87 119 106 110 106 107 134 ...
#> --------------
#> Theoph : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	132 obs. of  5 variables:
#> --------------
#> Titanic :  'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
#> --------------
#> ToothGrowth : 'data.frame':	60 obs. of  3 variables:
#> --------------
#> UCBAdmissions :  'table' num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
#> --------------
#> UKDriverDeaths :  Time-Series [1:192] from 1969 to 1985: 1687 1508 1507 1385 1632 ...
#> --------------
#> UKgas :  Time-Series [1:108] from 1960 to 1987: 160.1 129.7 84.8 120.1 160.1 ...
#> --------------
#> USAccDeaths :  Time-Series [1:72] from 1973 to 1979: 9007 8106 8928 9137 10017 ...
#> --------------
#> USArrests : 'data.frame':	50 obs. of  4 variables:
#> --------------
#> USJudgeRatings : 'data.frame':	43 obs. of  12 variables:
#> --------------
#> USPersonalExpenditure :  num [1:5, 1:5] 22.2 10.5 3.53 1.04 0.341 44.5 15.5 5.76 1.98 0.974 ...
#> --------------
#> UScitiesD :  'dist' int [1:45] 587 1212 701 1936 604 748 2139 2182 543 920 ...
#> --------------
#> VADeaths :  num [1:5, 1:4] 11.7 18.1 26.9 41 66 8.7 11.7 20.3 30.9 54.3 ...
#> --------------
#> WWWusage :  Time-Series [1:100] from 1 to 100: 88 84 85 85 84 85 83 85 88 89 ...
#> --------------
#> WorldPhones :  num [1:7, 1:7] 45939 60423 64721 68484 71799 ...
#> --------------
#> ability.cov : List of 3
#> --------------
#> airmiles :  Time-Series [1:24] from 1937 to 1960: 412 480 683 1052 1385 ...
#> --------------
#> airquality : 'data.frame':	153 obs. of  6 variables:
#> --------------
#> anscombe : 'data.frame':	11 obs. of  8 variables:
#> --------------
#> attenu : 'data.frame':	182 obs. of  5 variables:
#> --------------
#> attitude : 'data.frame':	30 obs. of  7 variables:
#> --------------
#> austres :  Time-Series [1:89] from 1971 to 1993: 13067 13130 13198 13254 13304 ...
#> --------------
#> cars : 'data.frame':	50 obs. of  2 variables:
#> --------------
#> chickwts : 'data.frame':	71 obs. of  2 variables:
#> --------------
#> co2 :  Time-Series [1:468] from 1959 to 1998: 315 316 316 318 318 ...
#> --------------
#> crimtab :  'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
#> --------------
#> discoveries :  Time-Series [1:100] from 1860 to 1959: 5 3 0 2 0 3 2 3 6 1 ...
#> --------------
#> esoph : 'data.frame':	88 obs. of  5 variables:
#> --------------
#> euro : 
#>   euro :  Named num [1:11] 13.76 40.34 1.96 166.39 5.95 ...
#>   euro.cross :  num [1:11, 1:11] 1 0.3411 7.0355 0.0827 2.3143 ...
#> --------------
#> eurodist :  'dist' num [1:210] 3313 2963 3175 3339 2762 ...
#> --------------
#> faithful : 'data.frame':	272 obs. of  2 variables:
#> --------------
#> freeny : 
#>   freeny : 'data.frame':	39 obs. of  5 variables:
#>   freeny.x :  num [1:39, 1:4] 8.8 8.79 8.79 8.81 8.81 ...
#>   freeny.y :  Time-Series [1:39] from 1962 to 1972: 8.79 8.79 8.81 8.81 8.91 ...
#> --------------
#> gait :  num [1:20, 1:39, 1:2] 37 36 33 29 23 18 15 12 9 6 ...
#> --------------
#> infert : 'data.frame':	248 obs. of  8 variables:
#> --------------
#> iris : 'data.frame':	150 obs. of  5 variables:
#> --------------
#> iris3 :  num [1:50, 1:4, 1:3] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> --------------
#> islands :  Named num [1:48] 11506 5500 16988 2968 16 ...
#> --------------
#> lh :  Time-Series [1:48] from 1 to 48: 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2 ...
#> --------------
#> longley : 'data.frame':	16 obs. of  7 variables:
#> --------------
#> lynx :  Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...
#> --------------
#> morley : 'data.frame':	100 obs. of  3 variables:
#> --------------
#> mtcars : 'data.frame':	32 obs. of  11 variables:
#> --------------
#> nhtemp :  Time-Series [1:60] from 1912 to 1971: 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 ...
#> --------------
#> nottem :  Time-Series [1:240] from 1920 to 1940: 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 ...
#> --------------
#> npk : 'data.frame':	24 obs. of  5 variables:
#> --------------
#> occupationalStatus :  'table' int [1:8, 1:8] 50 16 12 11 2 12 0 0 19 40 ...
#> --------------
#> penguins : 
#>   penguins : 'data.frame':	344 obs. of  8 variables:
#>   penguins_raw : 'data.frame':	344 obs. of  17 variables:
#> --------------
#> precip :  Named num [1:70] 67 54.7 7 48.5 14 17.2 20.7 13 43.4 40.2 ...
#> --------------
#> presidents :  Time-Series [1:120] from 1945 to 1975: NA 87 82 75 63 50 43 32 35 60 ...
#> --------------
#> pressure : 'data.frame':	19 obs. of  2 variables:
#> --------------
#> quakes : 'data.frame':	1000 obs. of  5 variables:
#> --------------
#> randu : 'data.frame':	400 obs. of  3 variables:
#> --------------
#> rivers :  num [1:141] 735 320 325 392 524 ...
#> --------------
#> rock : 'data.frame':	48 obs. of  4 variables:
#> --------------
#> sleep : 'data.frame':	20 obs. of  3 variables:
#> --------------
#> stackloss : 
#>   stack.loss :  num [1:21] 42 37 37 28 18 18 19 20 15 14 ...
#>   stack.x :  num [1:21, 1:3] 80 80 75 62 62 62 62 62 58 58 ...
#>   stackloss : 'data.frame':	21 obs. of  4 variables:
#> --------------
#> sunspot.month : 
#>   sunspot.m2014 :  Time-Series [1:3177] from 1749 to 2014: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...
#>   sunspot.month :  Time-Series [1:3310] from 1749 to 2025: 96.7 104.3 116.7 92.8 141.7 ...
#> --------------
#> sunspot.year :  Time-Series [1:289] from 1700 to 1988: 5 11 16 23 36 58 29 20 10 8 ...
#> --------------
#> sunspots :  Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...
#> --------------
#> swiss : 'data.frame':	47 obs. of  6 variables:
#> --------------
#> treering :  Time-Series [1:7980] from -6000 to 1979: 1.34 1.08 1.54 1.32 1.41 ...
#> --------------
#> trees : 'data.frame':	31 obs. of  3 variables:
#> --------------
#> uspop :  Time-Series [1:19] from 1790 to 1970: 3.93 5.31 7.24 9.64 12.9 17.1 23.2 31.4 39.8 50.2 ...
#> --------------
#> volcano :  num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...
#> --------------
#> warpbreaks : 'data.frame':	54 obs. of  3 variables:
#> --------------
#> women : 'data.frame':	15 obs. of  2 variables:
#> --------------

## Filtering (and return value)
dfl <- str_data("datasets", filterFUN=is.data.frame)
#> 
#> All data sets in R package 'datasets'  filtered by is.data.frame():
#> --------------------------  ========
#> 
#> BOD : 'data.frame':	6 obs. of  2 variables:
#>  $ Time  : num  1 2 3 4 5 7
#>  $ demand: num  8.3 10.3 19 16 15.6 19.8
#>  - attr(*, "reference")= chr "A1.4, p. 270"
#> --------------
#> CO2 : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	84 obs. of  5 variables:
#>  $ Plant    : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ...
#>  $ Type     : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ conc     : num  95 175 250 350 500 675 1000 95 175 250 ...
#>  $ uptake   : num  16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...
#>  - attr(*, "formula")=Class 'formula'  language uptake ~ conc | Plant
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "outer")=Class 'formula'  language ~Treatment * Type
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Ambient carbon dioxide concentration"
#>   ..$ y: chr "CO2 uptake rate"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(uL/L)"
#>   ..$ y: chr "(umol/m^2 s)"
#> --------------
#> ChickWeight : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	578 obs. of  4 variables:
#>  $ weight: num  42 51 59 64 76 93 106 125 149 171 ...
#>  $ Time  : num  0 2 4 6 8 10 12 14 16 18 ...
#>  $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 15 15 15 15 15 ...
#>  $ Diet  : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
#>  - attr(*, "formula")=Class 'formula'  language weight ~ Time | Chick
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "outer")=Class 'formula'  language ~Diet
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Time"
#>   ..$ y: chr "Body weight"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(days)"
#>   ..$ y: chr "(gm)"
#> --------------
#> DNase : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	176 obs. of  3 variables:
#>  $ Run    : Ord.factor w/ 11 levels "10"<"11"<"9"<..: 4 4 4 4 4 4 4 4 4 4 ...
#>  $ conc   : num  0.0488 0.0488 0.1953 0.1953 0.3906 ...
#>  $ density: num  0.017 0.018 0.121 0.124 0.206 0.215 0.377 0.374 0.614 0.609 ...
#>  - attr(*, "formula")=Class 'formula'  language density ~ conc | Run
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "DNase concentration"
#>   ..$ y: chr "Optical density"
#>  - attr(*, "units")=List of 1
#>   ..$ x: chr "(ng/ml)"
#> --------------
#> Formaldehyde : 'data.frame':	6 obs. of  2 variables:
#>  $ carb  : num  0.1 0.3 0.5 0.6 0.7 0.9
#>  $ optden: num  0.086 0.269 0.446 0.538 0.626 0.782
#> --------------
#> Indometh : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	66 obs. of  3 variables:
#>  $ Subject: Ord.factor w/ 6 levels "1"<"4"<"2"<"5"<..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ time   : num  0.25 0.5 0.75 1 1.25 2 3 4 5 6 ...
#>  $ conc   : num  1.5 0.94 0.78 0.48 0.37 0.19 0.12 0.11 0.08 0.07 ...
#>  - attr(*, "formula")=Class 'formula'  language conc ~ time | Subject
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Time since drug administration"
#>   ..$ y: chr "Indomethacin concentration"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(hr)"
#>   ..$ y: chr "(mcg/ml)"
#> --------------
#> InsectSprays : 'data.frame':	72 obs. of  2 variables:
#>  $ count: num  10 7 20 14 14 12 10 23 17 20 ...
#>  $ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> LifeCycleSavings : 'data.frame':	50 obs. of  5 variables:
#>  $ sr   : num  11.43 12.07 13.17 5.75 12.88 ...
#>  $ pop15: num  29.4 23.3 23.8 41.9 42.2 ...
#>  $ pop75: num  2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
#>  $ dpi  : num  2330 1508 2108 189 728 ...
#>  $ ddpi : num  2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
#> --------------
#> Loblolly : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	84 obs. of  3 variables:
#>  $ height: num  4.51 10.89 28.72 41.74 52.7 ...
#>  $ age   : num  3 5 10 15 20 25 3 5 10 15 ...
#>  $ Seed  : Ord.factor w/ 14 levels "329"<"327"<"325"<..: 10 10 10 10 10 10 13 13 13 13 ...
#>  - attr(*, "formula")=Class 'formula'  language height ~ age | Seed
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Age of tree"
#>   ..$ y: chr "Height of tree"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(yr)"
#>   ..$ y: chr "(ft)"
#> --------------
#> Orange : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	35 obs. of  3 variables:
#>  $ Tree         : Ord.factor w/ 5 levels "3"<"1"<"5"<"2"<..: 2 2 2 2 2 2 2 4 4 4 ...
#>  $ age          : num  118 484 664 1004 1231 ...
#>  $ circumference: num  30 58 87 115 120 142 145 33 69 111 ...
#>  - attr(*, "formula")=Class 'formula'  language circumference ~ age | Tree
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Time since December 31, 1968"
#>   ..$ y: chr "Trunk circumference"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(days)"
#>   ..$ y: chr "(mm)"
#> --------------
#> OrchardSprays : 'data.frame':	64 obs. of  4 variables:
#>  $ decrease : num  57 95 8 69 92 90 15 2 84 6 ...
#>  $ rowpos   : num  1 2 3 4 5 6 7 8 1 2 ...
#>  $ colpos   : num  1 1 1 1 1 1 1 1 2 2 ...
#>  $ treatment: Factor w/ 8 levels "A","B","C","D",..: 4 5 2 8 7 6 3 1 3 2 ...
#> --------------
#> PlantGrowth : 'data.frame':	30 obs. of  2 variables:
#>  $ weight: num  4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
#>  $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> Puromycin : 'data.frame':	23 obs. of  3 variables:
#>  $ conc : num  0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 ...
#>  $ rate : num  76 47 97 107 123 139 159 152 191 201 ...
#>  $ state: Factor w/ 2 levels "treated","untreated": 1 1 1 1 1 1 1 1 1 1 ...
#>  - attr(*, "reference")= chr "A1.3, p. 269"
#> --------------
#> Theoph : Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame':	132 obs. of  5 variables:
#>  $ Subject: Ord.factor w/ 12 levels "6"<"7"<"8"<"11"<..: 11 11 11 11 11 11 11 11 11 11 ...
#>  $ Wt     : num  79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 ...
#>  $ Dose   : num  4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 ...
#>  $ Time   : num  0 0.25 0.57 1.12 2.02 ...
#>  $ conc   : num  0.74 2.84 6.57 10.5 9.66 8.58 8.36 7.47 6.89 5.94 ...
#>  - attr(*, "formula")=Class 'formula'  language conc ~ Time | Subject
#>   .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
#>  - attr(*, "labels")=List of 2
#>   ..$ x: chr "Time since drug administration"
#>   ..$ y: chr "Theophylline concentration in serum"
#>  - attr(*, "units")=List of 2
#>   ..$ x: chr "(hr)"
#>   ..$ y: chr "(mg/l)"
#> --------------
#> ToothGrowth : 'data.frame':	60 obs. of  3 variables:
#>  $ len : num  4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
#>  $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ dose: num  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
#> --------------
#> USArrests : 'data.frame':	50 obs. of  4 variables:
#>  $ Murder  : num  13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
#>  $ Assault : int  236 263 294 190 276 204 110 238 335 211 ...
#>  $ UrbanPop: int  58 48 80 50 91 78 77 72 80 60 ...
#>  $ Rape    : num  21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
#> --------------
#> USJudgeRatings : 'data.frame':	43 obs. of  12 variables:
#>  $ CONT: num  5.7 6.8 7.2 6.8 7.3 6.2 10.6 7 7.3 8.2 ...
#>  $ INTG: num  7.9 8.9 8.1 8.8 6.4 8.8 9 5.9 8.9 7.9 ...
#>  $ DMNR: num  7.7 8.8 7.8 8.5 4.3 8.7 8.9 4.9 8.9 6.7 ...
#>  $ DILG: num  7.3 8.5 7.8 8.8 6.5 8.5 8.7 5.1 8.7 8.1 ...
#>  $ CFMG: num  7.1 7.8 7.5 8.3 6 7.9 8.5 5.4 8.6 7.9 ...
#>  $ DECI: num  7.4 8.1 7.6 8.5 6.2 8 8.5 5.9 8.5 8 ...
#>  $ PREP: num  7.1 8 7.5 8.7 5.7 8.1 8.5 4.8 8.4 7.9 ...
#>  $ FAMI: num  7.1 8 7.5 8.7 5.7 8 8.5 5.1 8.4 8.1 ...
#>  $ ORAL: num  7.1 7.8 7.3 8.4 5.1 8 8.6 4.7 8.4 7.7 ...
#>  $ WRIT: num  7 7.9 7.4 8.5 5.3 8 8.4 4.9 8.5 7.8 ...
#>  $ PHYS: num  8.3 8.5 7.9 8.8 5.5 8.6 9.1 6.8 8.8 8.5 ...
#>  $ RTEN: num  7.8 8.7 7.8 8.7 4.8 8.6 9 5 8.8 7.9 ...
#> --------------
#> airquality : 'data.frame':	153 obs. of  6 variables:
#>  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
#>  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
#>  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
#>  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
#>  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
#>  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...
#> --------------
#> anscombe : 'data.frame':	11 obs. of  8 variables:
#>  $ x1: num  10 8 13 9 11 14 6 4 12 7 ...
#>  $ x2: num  10 8 13 9 11 14 6 4 12 7 ...
#>  $ x3: num  10 8 13 9 11 14 6 4 12 7 ...
#>  $ x4: num  8 8 8 8 8 8 8 19 8 8 ...
#>  $ y1: num  8.04 6.95 7.58 8.81 8.33 ...
#>  $ y2: num  9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
#>  $ y3: num  7.46 6.77 12.74 7.11 7.81 ...
#>  $ y4: num  6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
#> --------------
#> attenu : 'data.frame':	182 obs. of  5 variables:
#>  $ event  : num  1 2 2 2 2 2 2 2 2 2 ...
#>  $ mag    : num  7 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 ...
#>  $ station: Factor w/ 117 levels "1008","1011",..: 24 13 15 68 39 74 22 1 8 55 ...
#>  $ dist   : num  12 148 42 85 107 109 156 224 293 359 ...
#>  $ accel  : num  0.359 0.014 0.196 0.135 0.062 0.054 0.014 0.018 0.01 0.004 ...
#> --------------
#> attitude : 'data.frame':	30 obs. of  7 variables:
#>  $ rating    : num  43 63 71 61 81 43 58 71 72 67 ...
#>  $ complaints: num  51 64 70 63 78 55 67 75 82 61 ...
#>  $ privileges: num  30 51 68 45 56 49 42 50 72 45 ...
#>  $ learning  : num  39 54 69 47 66 44 56 55 67 47 ...
#>  $ raises    : num  61 63 76 54 71 54 66 70 71 62 ...
#>  $ critical  : num  92 73 86 84 83 49 68 66 83 80 ...
#>  $ advance   : num  45 47 48 35 47 34 35 41 31 41 ...
#> --------------
#> cars : 'data.frame':	50 obs. of  2 variables:
#>  $ speed: num  4 4 7 7 8 9 10 10 10 11 ...
#>  $ dist : num  2 10 4 22 16 10 18 26 34 17 ...
#> --------------
#> chickwts : 'data.frame':	71 obs. of  2 variables:
#>  $ weight: num  179 160 136 227 217 168 108 124 143 140 ...
#>  $ feed  : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...
#> --------------
#> esoph : 'data.frame':	88 obs. of  5 variables:
#>  $ agegp    : Ord.factor w/ 6 levels "25-34"<"35-44"<..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ alcgp    : Ord.factor w/ 4 levels "0-39g/day"<"40-79"<..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ tobgp    : Ord.factor w/ 4 levels "0-9g/day"<"10-19"<..: 1 2 3 4 1 2 3 4 1 2 ...
#>  $ ncases   : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ ncontrols: num  40 10 6 5 27 7 4 7 2 1 ...
#> --------------
#> faithful : 'data.frame':	272 obs. of  2 variables:
#>  $ eruptions: num  3.6 1.8 3.33 2.28 4.53 ...
#>  $ waiting  : num  79 54 74 62 85 55 88 85 51 85 ...
#> --------------
#> freeny : 'data.frame':	39 obs. of  5 variables:
#>  $ y                    : Time-Series  from 1962 to 1972: 8.79 8.79 8.81 8.81 8.91 ...
#>  $ lag.quarterly.revenue: num  8.8 8.79 8.79 8.81 8.81 ...
#>  $ price.index          : num  4.71 4.7 4.69 4.69 4.64 ...
#>  $ income.level         : num  5.82 5.83 5.83 5.84 5.85 ...
#>  $ market.potential     : num  13 13 13 13 13 ...
#> --------------
#> infert : 'data.frame':	248 obs. of  8 variables:
#>  $ education     : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 1 1 2 2 2 2 2 2 ...
#>  $ age           : num  26 42 39 34 35 36 23 32 21 28 ...
#>  $ parity        : num  6 1 6 4 3 4 1 2 1 2 ...
#>  $ induced       : num  1 1 2 2 1 2 0 0 0 0 ...
#>  $ case          : num  1 1 1 1 1 1 1 1 1 1 ...
#>  $ spontaneous   : num  2 0 0 0 1 1 0 0 1 0 ...
#>  $ stratum       : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ pooled.stratum: num  3 1 4 2 32 36 6 22 5 19 ...
#> --------------
#> iris : 'data.frame':	150 obs. of  5 variables:
#>  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#>  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#>  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#>  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#>  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> longley : 'data.frame':	16 obs. of  7 variables:
#>  $ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ...
#>  $ GNP         : num  234 259 258 285 329 ...
#>  $ Unemployed  : num  236 232 368 335 210 ...
#>  $ Armed.Forces: num  159 146 162 165 310 ...
#>  $ Population  : num  108 109 110 111 112 ...
#>  $ Year        : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
#>  $ Employed    : num  60.3 61.1 60.2 61.2 63.2 ...
#> --------------
#> morley : 'data.frame':	100 obs. of  3 variables:
#>  $ Expt : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ Run  : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ Speed: int  850 740 900 1070 930 850 950 980 980 880 ...
#> --------------
#> mtcars : 'data.frame':	32 obs. of  11 variables:
#>  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#>  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
#>  $ disp: num  160 160 108 258 360 ...
#>  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
#>  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#>  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
#>  $ qsec: num  16.5 17 18.6 19.4 17 ...
#>  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
#>  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
#>  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
#>  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
#> --------------
#> npk : 'data.frame':	24 obs. of  5 variables:
#>  $ block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ N    : Factor w/ 2 levels "0","1": 1 2 1 2 2 2 1 1 1 2 ...
#>  $ P    : Factor w/ 2 levels "0","1": 2 2 1 1 1 2 1 2 2 2 ...
#>  $ K    : Factor w/ 2 levels "0","1": 2 1 1 2 1 2 2 1 1 2 ...
#>  $ yield: num  49.5 62.8 46.8 57 59.8 58.5 55.5 56 62.8 55.8 ...
#> --------------
#> penguins : 
#>   penguins : 'data.frame':	344 obs. of  8 variables:
#>   $ species    : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   $ island     : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
#>   $ bill_len   : num  39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
#>   $ bill_dep   : num  18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
#>   $ flipper_len: int  181 186 195 NA 193 190 181 195 193 190 ...
#>   $ body_mass  : int  3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
#>   $ sex        : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
#>   $ year       : int  2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
#>   penguins_raw : 'data.frame':	344 obs. of  17 variables:
#>   $ studyName          : chr  "PAL0708" "PAL0708" "PAL0708" "PAL0708" ...
#>   $ Sample Number      : num  1 2 3 4 5 6 7 8 9 10 ...
#>   $ Species            : chr  "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" "Adelie Penguin (Pygoscelis adeliae)" ...
#>   $ Region             : chr  "Anvers" "Anvers" "Anvers" "Anvers" ...
#>   $ Island             : chr  "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
#>   $ Stage              : chr  "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" "Adult, 1 Egg Stage" ...
#>   $ Individual ID      : chr  "N1A1" "N1A2" "N2A1" "N2A2" ...
#>   $ Clutch Completion  : chr  "Yes" "Yes" "Yes" "Yes" ...
#>   $ Date Egg           : Date, format: "2007-11-11" "2007-11-11" ...
#>   $ Culmen Length (mm) : num  39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
#>   $ Culmen Depth (mm)  : num  18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
#>   $ Flipper Length (mm): num  181 186 195 NA 193 190 181 195 193 190 ...
#>   $ Body Mass (g)      : num  3750 3800 3250 NA 3450 ...
#>   $ Sex                : chr  "MALE" "FEMALE" "FEMALE" NA ...
#>   $ Delta 15 N (o/oo)  : num  NA 8.95 8.37 NA 8.77 ...
#>   $ Delta 13 C (o/oo)  : num  NA -24.7 -25.3 NA -25.3 ...
#>   $ Comments           : chr  "Not enough blood for isotopes." NA NA "Adult not sampled." ...
#> --------------
#> pressure : 'data.frame':	19 obs. of  2 variables:
#>  $ temperature: num  0 20 40 60 80 100 120 140 160 180 ...
#>  $ pressure   : num  0.0002 0.0012 0.006 0.03 0.09 0.27 0.75 1.85 4.2 8.8 ...
#> --------------
#> quakes : 'data.frame':	1000 obs. of  5 variables:
#>  $ lat     : num  -20.4 -20.6 -26 -18 -20.4 ...
#>  $ long    : num  182 181 184 182 182 ...
#>  $ depth   : int  562 650 42 626 649 195 82 194 211 622 ...
#>  $ mag     : num  4.8 4.2 5.4 4.1 4 4 4.8 4.4 4.7 4.3 ...
#>  $ stations: int  41 15 43 19 11 12 43 15 35 19 ...
#> --------------
#> randu : 'data.frame':	400 obs. of  3 variables:
#>  $ x: num  0.000031 0.044495 0.82244 0.322291 0.393595 ...
#>  $ y: num  0.000183 0.155732 0.873416 0.648545 0.826873 ...
#>  $ z: num  0.000824 0.533939 0.838542 0.990648 0.418881 ...
#> --------------
#> rock : 'data.frame':	48 obs. of  4 variables:
#>  $ area : int  4990 7002 7558 7352 7943 7979 9333 8209 8393 6425 ...
#>  $ peri : num  2792 3893 3931 3869 3949 ...
#>  $ shape: num  0.0903 0.1486 0.1833 0.1171 0.1224 ...
#>  $ perm : num  6.3 6.3 6.3 6.3 17.1 17.1 17.1 17.1 119 119 ...
#> --------------
#> sleep : 'data.frame':	20 obs. of  3 variables:
#>  $ extra: num  0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
#>  $ group: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ ID   : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
#> --------------
#> stackloss : 'data.frame':	21 obs. of  4 variables:
#>  $ Air.Flow  : num  80 80 75 62 62 62 62 62 58 58 ...
#>  $ Water.Temp: num  27 27 25 24 22 23 24 24 23 18 ...
#>  $ Acid.Conc.: num  89 88 90 87 87 87 93 93 87 80 ...
#>  $ stack.loss: num  42 37 37 28 18 18 19 20 15 14 ...
#> --------------
#> swiss : 'data.frame':	47 obs. of  6 variables:
#>  $ Fertility       : num  80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
#>  $ Agriculture     : num  17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...
#>  $ Examination     : int  15 6 5 12 17 9 16 14 12 16 ...
#>  $ Education       : int  12 9 5 7 15 7 7 8 7 13 ...
#>  $ Catholic        : num  9.96 84.84 93.4 33.77 5.16 ...
#>  $ Infant.Mortality: num  22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...
#> --------------
#> trees : 'data.frame':	31 obs. of  3 variables:
#>  $ Girth : num  8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
#>  $ Height: num  70 65 63 72 81 83 66 75 80 75 ...
#>  $ Volume: num  10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...
#> --------------
#> warpbreaks : 'data.frame':	54 obs. of  3 variables:
#>  $ breaks : num  26 30 54 25 70 52 51 26 67 18 ...
#>  $ wool   : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 1 2 ...
#> --------------
#> women : 'data.frame':	15 obs. of  2 variables:
#>  $ height: num  58 59 60 61 62 63 64 65 66 67 ...
#>  $ weight: num  115 117 120 123 126 129 132 135 139 142 ...
#> --------------
str(df.d <- dfl$datasets)
#> List of 43
#>  $ BOD             : chr "BOD"
#>  $ CO2             : chr "CO2"
#>  $ ChickWeight     : chr "ChickWeight"
#>  $ DNase           : chr "DNase"
#>  $ Formaldehyde    : chr "Formaldehyde"
#>  $ Indometh        : chr "Indometh"
#>  $ InsectSprays    : chr "InsectSprays"
#>  $ LifeCycleSavings: chr "LifeCycleSavings"
#>  $ Loblolly        : chr "Loblolly"
#>  $ Orange          : chr "Orange"
#>  $ OrchardSprays   : chr "OrchardSprays"
#>  $ PlantGrowth     : chr "PlantGrowth"
#>  $ Puromycin       : chr "Puromycin"
#>  $ Theoph          : chr "Theoph"
#>  $ ToothGrowth     : chr "ToothGrowth"
#>  $ USArrests       : chr "USArrests"
#>  $ USJudgeRatings  : chr "USJudgeRatings"
#>  $ airquality      : chr "airquality"
#>  $ anscombe        : chr "anscombe"
#>  $ attenu          : chr "attenu"
#>  $ attitude        : chr "attitude"
#>  $ cars            : chr "cars"
#>  $ chickwts        : chr "chickwts"
#>  $ esoph           : chr "esoph"
#>  $ faithful        : chr "faithful"
#>  $ freeny          : chr "freeny"
#>  $ infert          : chr "infert"
#>  $ iris            : chr "iris"
#>  $ longley         : chr "longley"
#>  $ morley          : chr "morley"
#>  $ mtcars          : chr "mtcars"
#>  $ npk             : chr "npk"
#>  $ penguins        : chr [1:2] "penguins" "penguins_raw"
#>  $ pressure        : chr "pressure"
#>  $ quakes          : chr "quakes"
#>  $ randu           : chr "randu"
#>  $ rock            : chr "rock"
#>  $ sleep           : chr "sleep"
#>  $ stackloss       : chr "stackloss"
#>  $ swiss           : chr "swiss"
#>  $ trees           : chr "trees"
#>  $ warpbreaks      : chr "warpbreaks"
#>  $ women           : chr "women"
## dim() of all those data frames:
t(sapply(unlist(df.d), function(.) dim(get(.))))
#>                  [,1] [,2]
#> BOD                 6    2
#> CO2                84    5
#> ChickWeight       578    4
#> DNase             176    3
#> Formaldehyde        6    2
#> Indometh           66    3
#> InsectSprays       72    2
#> LifeCycleSavings   50    5
#> Loblolly           84    3
#> Orange             35    3
#> OrchardSprays      64    4
#> PlantGrowth        30    2
#> Puromycin          23    3
#> Theoph            132    5
#> ToothGrowth        60    3
#> USArrests          50    4
#> USJudgeRatings     43   12
#> airquality        153    6
#> anscombe           11    8
#> attenu            182    5
#> attitude           30    7
#> cars               50    2
#> chickwts           71    2
#> esoph              88    5
#> faithful          272    2
#> freeny             39    5
#> infert            248    8
#> iris              150    5
#> longley            16    7
#> morley            100    3
#> mtcars             32   11
#> npk                24    5
#> penguins1         344    8
#> penguins2         344   17
#> pressure           19    2
#> quakes           1000    5
#> randu             400    3
#> rock               48    4
#> sleep              20    3
#> stackloss          21    4
#> swiss              47    6
#> trees              31    3
#> warpbreaks         54    3
#> women              15    2

### Data sets in all attached packages but "datasets" (and stubs):
s <- search()
(Apkgs <- sub("^package:", '', s[grep("^package:", s)]))
#>  [1] "tools"     "gmp"       "lokern"    "MASS"      "cluster"   "rpart"    
#>  [7] "sfsmisc"   "stats"     "graphics"  "grDevices" "utils"     "datasets" 
#> [13] "methods"   "base"     
str_data(Apkgs[!Apkgs %in% c("datasets", "stats", "base")])
#> 
#> All data sets in R package 'tools' :
#> --------------------------  =====
#> 
#> 
#> All data sets in R package 'gmp' :
#> --------------------------  ===
#> 
#> Oakley1 :  'bigz' raw (2 %% 15525180923007089351309181312584817556313340494345143132023511949029662399491021072586694538765916424429100| __truncated__
#>  - attr(*, "mod")= 'bigz' raw 15525180923007089351309181312584817556313340494345143132023511949029662399491021072586694538765916424429100076802| __truncated__
#> --------------
#> Oakley2 :  'bigz' raw (2 %% 17976931348623159077083915679378745319786029604875601170644442368419718021615851936894783379586492554150218| __truncated__
#>  - attr(*, "mod")= 'bigz' raw 17976931348623159077083915679378745319786029604875601170644442368419718021615851936894783379586492554150218056548| __truncated__
#> --------------
#> 
#> All data sets in R package 'lokern' :
#> --------------------------  ======
#> 
#> xSim :  num [1:75] 1.97 1.9 1.64 1.43 2.4 ...
#> --------------
#> 
#> All data sets in R package 'MASS' :
#> --------------------------  ====
#> 
#> Aids2 : 'data.frame':	2843 obs. of  7 variables:
#>  $ state  : Factor w/ 4 levels "NSW","Other",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ sex    : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ diag   : int  10905 11029 9551 9577 10015 9971 10746 10042 10464 10439 ...
#>  $ death  : int  11081 11096 9983 9654 10290 10344 11135 11069 10956 10873 ...
#>  $ status : Factor w/ 2 levels "A","D": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ T.categ: Factor w/ 8 levels "hs","hsid","id",..: 1 1 1 5 1 1 8 1 1 2 ...
#>  $ age    : int  35 53 42 44 39 36 36 31 26 27 ...
#> --------------
#> Animals : 'data.frame':	28 obs. of  2 variables:
#>  $ body : num  1.35 465 36.33 27.66 1.04 ...
#>  $ brain: num  8.1 423 119.5 115 5.5 ...
#> --------------
#> Boston : 'data.frame':	506 obs. of  14 variables:
#>  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
#>  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
#>  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
#>  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
#>  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
#>  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
#>  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
#>  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
#>  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
#>  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
#>  $ black  : num  397 397 393 395 397 ...
#>  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
#>  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
#> --------------
#> Cars93 : 'data.frame':	93 obs. of  27 variables:
#>  $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
#>  $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
#>  $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
#>  $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
#>  $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
#>  $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
#>  $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
#>  $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
#>  $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
#>  $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
#>  $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
#>  $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
#>  $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
#>  $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
#>  $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
#>  $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
#>  $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
#>  $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
#>  $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
#>  $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
#>  $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
#>  $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
#>  $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
#>  $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
#>  $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
#>  $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
#>  $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...
#> --------------
#> Cushings : 'data.frame':	27 obs. of  3 variables:
#>  $ Tetrahydrocortisone: num  3.1 3 1.9 3.8 4.1 1.9 8.3 3.8 3.9 7.8 ...
#>  $ Pregnanetriol      : num  11.7 1.3 0.1 0.04 1.1 0.4 1 0.2 0.6 1.2 ...
#>  $ Type               : Factor w/ 4 levels "a","b","c","u": 1 1 1 1 1 1 2 2 2 2 ...
#> --------------
#> DDT :  num [1:15] 2.79 2.93 3.22 3.78 3.22 3.38 3.18 3.33 3.34 3.06 ...
#> --------------
#> GAGurine : 'data.frame':	314 obs. of  2 variables:
#>  $ Age: num  0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01 ...
#>  $ GAG: num  23 23.8 16.9 18.6 17.9 25.9 16.5 26.3 26.9 17.9 ...
#> --------------
#> Insurance : 'data.frame':	64 obs. of  5 variables:
#>  $ District: Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Group   : Ord.factor w/ 4 levels "<1l"<"1-1.5l"<..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ Age     : Ord.factor w/ 4 levels "<25"<"25-29"<..: 1 2 3 4 1 2 3 4 1 2 ...
#>  $ Holders : int  197 264 246 1680 284 536 696 3582 133 286 ...
#>  $ Claims  : int  38 35 20 156 63 84 89 400 19 52 ...
#> --------------
#> Melanoma : 'data.frame':	205 obs. of  7 variables:
#>  $ time     : int  10 30 35 99 185 204 210 232 232 279 ...
#>  $ status   : int  3 3 2 3 1 1 1 3 1 1 ...
#>  $ sex      : int  1 1 1 0 1 1 1 0 1 0 ...
#>  $ age      : int  76 56 41 71 52 28 77 60 49 68 ...
#>  $ year     : int  1972 1968 1977 1968 1965 1971 1972 1974 1968 1971 ...
#>  $ thickness: num  6.76 0.65 1.34 2.9 12.08 ...
#>  $ ulcer    : int  1 0 0 0 1 1 1 1 1 1 ...
#> --------------
#> OME : 'data.frame':	1097 obs. of  7 variables:
#>  $ ID     : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ Age    : int  30 30 30 30 30 30 30 30 30 30 ...
#>  $ OME    : Factor w/ 3 levels "N/A","high","low": 3 3 3 3 3 3 3 3 3 3 ...
#>  $ Loud   : int  35 35 40 40 45 45 50 50 55 55 ...
#>  $ Noise  : Factor w/ 2 levels "coherent","incoherent": 1 2 1 2 1 2 1 2 1 2 ...
#>  $ Correct: int  1 4 0 1 2 2 3 4 3 2 ...
#>  $ Trials : int  4 5 3 1 4 2 3 4 3 2 ...
#> --------------
#> Pima.te : 'data.frame':	332 obs. of  8 variables:
#>  $ npreg: int  6 1 1 3 2 5 0 1 3 9 ...
#>  $ glu  : int  148 85 89 78 197 166 118 103 126 119 ...
#>  $ bp   : int  72 66 66 50 70 72 84 30 88 80 ...
#>  $ skin : int  35 29 23 32 45 19 47 38 41 35 ...
#>  $ bmi  : num  33.6 26.6 28.1 31 30.5 25.8 45.8 43.3 39.3 29 ...
#>  $ ped  : num  0.627 0.351 0.167 0.248 0.158 0.587 0.551 0.183 0.704 0.263 ...
#>  $ age  : int  50 31 21 26 53 51 31 33 27 29 ...
#>  $ type : Factor w/ 2 levels "No","Yes": 2 1 1 2 2 2 2 1 1 2 ...
#> --------------
#> Pima.tr : 'data.frame':	200 obs. of  8 variables:
#>  $ npreg: int  5 7 5 0 0 5 3 1 3 2 ...
#>  $ glu  : int  86 195 77 165 107 97 83 193 142 128 ...
#>  $ bp   : int  68 70 82 76 60 76 58 50 80 78 ...
#>  $ skin : int  28 33 41 43 25 27 31 16 15 37 ...
#>  $ bmi  : num  30.2 25.1 35.8 47.9 26.4 35.6 34.3 25.9 32.4 43.3 ...
#>  $ ped  : num  0.364 0.163 0.156 0.259 0.133 ...
#>  $ age  : int  24 55 35 26 23 52 25 24 63 31 ...
#>  $ type : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 1 1 2 ...
#> --------------
#> Pima.tr2 : 'data.frame':	300 obs. of  8 variables:
#>  $ npreg: int  5 7 5 0 0 5 3 1 3 2 ...
#>  $ glu  : int  86 195 77 165 107 97 83 193 142 128 ...
#>  $ bp   : int  68 70 82 76 60 76 58 50 80 78 ...
#>  $ skin : int  28 33 41 43 25 27 31 16 15 37 ...
#>  $ bmi  : num  30.2 25.1 35.8 47.9 26.4 35.6 34.3 25.9 32.4 43.3 ...
#>  $ ped  : num  0.364 0.163 0.156 0.259 0.133 ...
#>  $ age  : int  24 55 35 26 23 52 25 24 63 31 ...
#>  $ type : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 1 1 2 ...
#> --------------
#> Rabbit : 'data.frame':	60 obs. of  5 variables:
#>  $ BPchange : num  0.5 4.5 10 26 37 32 1 1.25 4 12 ...
#>  $ Dose     : num  6.25 12.5 25 50 100 200 6.25 12.5 25 50 ...
#>  $ Run      : Factor w/ 10 levels "C1","C2","C3",..: 1 1 1 1 1 1 2 2 2 2 ...
#>  $ Treatment: Factor w/ 2 levels "Control","MDL": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Animal   : Factor w/ 5 levels "R1","R2","R3",..: 1 1 1 1 1 1 2 2 2 2 ...
#> --------------
#> Rubber : 'data.frame':	30 obs. of  3 variables:
#>  $ loss: int  372 206 175 154 136 112 55 45 221 166 ...
#>  $ hard: int  45 55 61 66 71 71 81 86 53 60 ...
#>  $ tens: int  162 233 232 231 231 237 224 219 203 189 ...
#> --------------
#> SP500 :  num [1:2780] -0.259 -0.865 -0.98 0.45 -1.186 ...
#> --------------
#> Sitka : 'data.frame':	395 obs. of  4 variables:
#>  $ size : num  4.51 4.98 5.41 5.9 6.15 4.24 4.2 4.68 4.92 4.96 ...
#>  $ Time : num  152 174 201 227 258 152 174 201 227 258 ...
#>  $ tree : int  1 1 1 1 1 2 2 2 2 2 ...
#>  $ treat: Factor w/ 2 levels "control","ozone": 2 2 2 2 2 2 2 2 2 2 ...
#> --------------
#> Sitka89 : 'data.frame':	632 obs. of  4 variables:
#>  $ size : num  6.16 6.18 6.48 6.65 6.87 6.95 6.99 7.04 5.2 5.22 ...
#>  $ Time : num  469 496 528 556 579 613 639 674 469 496 ...
#>  $ tree : int  1 1 1 1 1 1 1 1 2 2 ...
#>  $ treat: Factor w/ 2 levels "control","ozone": 2 2 2 2 2 2 2 2 2 2 ...
#> --------------
#> Skye : 'data.frame':	23 obs. of  3 variables:
#>  $ A: int  52 52 47 45 40 37 27 27 23 22 ...
#>  $ F: int  42 44 48 49 50 54 58 54 59 59 ...
#>  $ M: int  6 4 5 6 10 9 15 19 18 19 ...
#> --------------
#> Traffic : 'data.frame':	184 obs. of  4 variables:
#>  $ year : int  1961 1961 1961 1961 1961 1961 1961 1961 1961 1961 ...
#>  $ day  : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ limit: Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ y    : int  9 11 9 20 31 26 18 19 18 13 ...
#> --------------
#> UScereal : 'data.frame':	65 obs. of  11 variables:
#>  $ mfr      : Factor w/ 6 levels "G","K","N","P",..: 3 2 2 1 2 1 6 4 5 1 ...
#>  $ calories : num  212 212 100 147 110 ...
#>  $ protein  : num  12.12 12.12 8 2.67 2 ...
#>  $ fat      : num  3.03 3.03 0 2.67 0 ...
#>  $ sodium   : num  394 788 280 240 125 ...
#>  $ fibre    : num  30.3 27.3 28 2 1 ...
#>  $ carbo    : num  15.2 21.2 16 14 11 ...
#>  $ sugars   : num  18.2 15.2 0 13.3 14 ...
#>  $ shelf    : int  3 3 3 1 2 3 1 3 2 1 ...
#>  $ potassium: num  848.5 969.7 660 93.3 30 ...
#>  $ vitamins : Factor w/ 3 levels "100%","enriched",..: 2 2 2 2 2 2 2 2 2 2 ...
#> --------------
#> UScrime : 'data.frame':	47 obs. of  16 variables:
#>  $ M   : int  151 143 142 136 141 121 127 131 157 140 ...
#>  $ So  : int  1 0 1 0 0 0 1 1 1 0 ...
#>  $ Ed  : int  91 113 89 121 121 110 111 109 90 118 ...
#>  $ Po1 : int  58 103 45 149 109 118 82 115 65 71 ...
#>  $ Po2 : int  56 95 44 141 101 115 79 109 62 68 ...
#>  $ LF  : int  510 583 533 577 591 547 519 542 553 632 ...
#>  $ M.F : int  950 1012 969 994 985 964 982 969 955 1029 ...
#>  $ Pop : int  33 13 18 157 18 25 4 50 39 7 ...
#>  $ NW  : int  301 102 219 80 30 44 139 179 286 15 ...
#>  $ U1  : int  108 96 94 102 91 84 97 79 81 100 ...
#>  $ U2  : int  41 36 33 39 20 29 38 35 28 24 ...
#>  $ GDP : int  394 557 318 673 578 689 620 472 421 526 ...
#>  $ Ineq: int  261 194 250 167 174 126 168 206 239 174 ...
#>  $ Prob: num  0.0846 0.0296 0.0834 0.0158 0.0414 ...
#>  $ Time: num  26.2 25.3 24.3 29.9 21.3 ...
#>  $ y   : int  791 1635 578 1969 1234 682 963 1555 856 705 ...
#> --------------
#> VA : 'data.frame':	137 obs. of  8 variables:
#>  $ stime    : num  72 411 228 126 118 10 82 110 314 100 ...
#>  $ status   : num  1 1 1 1 1 1 1 1 1 0 ...
#>  $ treat    : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ age      : num  69 64 38 63 65 49 69 68 43 70 ...
#>  $ Karn     : num  60 70 60 60 70 20 40 80 50 70 ...
#>  $ diag.time: num  7 5 3 9 11 5 10 29 18 6 ...
#>  $ cell     : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ prior    : Factor w/ 2 levels "0","10": 1 2 1 2 2 1 2 1 1 1 ...
#> --------------
#> abbey :  num [1:31] 5.2 6.5 6.9 7 7 7 7.4 8 8 8 ...
#> --------------
#> accdeaths :  Time-Series [1:72] from 1973 to 1979: 9007 8106 8928 9137 10017 ...
#> --------------
#> anorexia : 'data.frame':	72 obs. of  3 variables:
#>  $ Treat : Factor w/ 3 levels "CBT","Cont","FT": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ Prewt : num  80.7 89.4 91.8 74 78.1 88.3 87.3 75.1 80.6 78.4 ...
#>  $ Postwt: num  80.2 80.1 86.4 86.3 76.1 78.1 75.1 86.7 73.5 84.6 ...
#> --------------
#> bacteria : 'data.frame':	220 obs. of  6 variables:
#>  $ y   : Factor w/ 2 levels "n","y": 2 2 2 2 2 2 1 2 2 2 ...
#>  $ ap  : Factor w/ 2 levels "a","p": 2 2 2 2 1 1 1 1 1 1 ...
#>  $ hilo: Factor w/ 2 levels "hi","lo": 1 1 1 1 1 1 1 1 2 2 ...
#>  $ week: int  0 2 4 11 0 2 6 11 0 2 ...
#>  $ ID  : Factor w/ 50 levels "X01","X02","X03",..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ trt : Factor w/ 3 levels "placebo","drug",..: 1 1 1 1 3 3 3 3 2 2 ...
#> --------------
#> beav1 : 'data.frame':	114 obs. of  4 variables:
#>  $ day  : int  346 346 346 346 346 346 346 346 346 346 ...
#>  $ time : int  840 850 900 910 920 930 940 950 1000 1010 ...
#>  $ temp : num  36.3 36.3 36.4 36.4 36.5 ...
#>  $ activ: int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> beav2 : 'data.frame':	100 obs. of  4 variables:
#>  $ day  : int  307 307 307 307 307 307 307 307 307 307 ...
#>  $ time : int  930 940 950 1000 1010 1020 1030 1040 1050 1100 ...
#>  $ temp : num  36.6 36.7 36.9 37.1 37.2 ...
#>  $ activ: int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> biopsy : 'data.frame':	699 obs. of  11 variables:
#>  $ ID   : chr  "1000025" "1002945" "1015425" "1016277" ...
#>  $ V1   : int  5 5 3 6 4 8 1 2 2 4 ...
#>  $ V2   : int  1 4 1 8 1 10 1 1 1 2 ...
#>  $ V3   : int  1 4 1 8 1 10 1 2 1 1 ...
#>  $ V4   : int  1 5 1 1 3 8 1 1 1 1 ...
#>  $ V5   : int  2 7 2 3 2 7 2 2 2 2 ...
#>  $ V6   : int  1 10 2 4 1 10 10 1 1 1 ...
#>  $ V7   : int  3 3 3 3 3 9 3 3 1 2 ...
#>  $ V8   : int  1 2 1 7 1 7 1 1 1 1 ...
#>  $ V9   : int  1 1 1 1 1 1 1 1 5 1 ...
#>  $ class: Factor w/ 2 levels "benign","malignant": 1 1 1 1 1 2 1 1 1 1 ...
#> --------------
#> birthwt : 'data.frame':	189 obs. of  10 variables:
#>  $ low  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ age  : int  19 33 20 21 18 21 22 17 29 26 ...
#>  $ lwt  : int  182 155 105 108 107 124 118 103 123 113 ...
#>  $ race : int  2 3 1 1 1 3 1 3 1 1 ...
#>  $ smoke: int  0 0 1 1 1 0 0 0 1 1 ...
#>  $ ptl  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ ht   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ ui   : int  1 0 0 1 1 0 0 0 0 0 ...
#>  $ ftv  : int  0 3 1 2 0 0 1 1 1 0 ...
#>  $ bwt  : int  2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
#> --------------
#> cabbages : 'data.frame':	60 obs. of  4 variables:
#>  $ Cult  : Factor w/ 2 levels "c39","c52": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Date  : Factor w/ 3 levels "d16","d20","d21": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ HeadWt: num  2.5 2.2 3.1 4.3 2.5 4.3 3.8 4.3 1.7 3.1 ...
#>  $ VitC  : int  51 55 45 42 53 50 50 52 56 49 ...
#> --------------
#> caith : 'data.frame':	4 obs. of  5 variables:
#>  $ fair  : int  326 688 343 98
#>  $ red   : int  38 116 84 48
#>  $ medium: int  241 584 909 403
#>  $ dark  : int  110 188 412 681
#>  $ black : int  3 4 26 85
#> --------------
#> cats : 'data.frame':	144 obs. of  3 variables:
#>  $ Sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Bwt: num  2 2 2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 ...
#>  $ Hwt: num  7 7.4 9.5 7.2 7.3 7.6 8.1 8.2 8.3 8.5 ...
#> --------------
#> cement : 'data.frame':	13 obs. of  5 variables:
#>  $ x1: int  7 1 11 11 7 11 3 1 2 21 ...
#>  $ x2: int  26 29 56 31 52 55 71 31 54 47 ...
#>  $ x3: int  6 15 8 8 6 9 17 22 18 4 ...
#>  $ x4: int  60 52 20 47 33 22 6 44 22 26 ...
#>  $ y : num  78.5 74.3 104.3 87.6 95.9 ...
#> --------------
#> chem :  num [1:24] 2.9 3.1 3.4 3.4 3.7 3.7 2.8 2.5 2.4 2.4 ...
#> --------------
#> coop : 'data.frame':	252 obs. of  4 variables:
#>  $ Lab : Factor w/ 6 levels "L1","L2","L3",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Spc : Factor w/ 7 levels "S1","S2","S3",..: 1 1 1 1 1 1 2 2 2 2 ...
#>  $ Bat : Factor w/ 3 levels "B1","B2","B3": 1 1 2 2 3 3 1 1 2 2 ...
#>  $ Conc: num  0.29 0.33 0.33 0.32 0.34 0.31 0.13 0.14 0.16 0.11 ...
#> --------------
#> cpus : 'data.frame':	209 obs. of  9 variables:
#>  $ name   : Factor w/ 209 levels "ADVISOR 32/60",..: 1 3 2 4 5 6 8 9 10 7 ...
#>  $ syct   : int  125 29 29 29 29 26 23 23 23 23 ...
#>  $ mmin   : int  256 8000 8000 8000 8000 8000 16000 16000 16000 32000 ...
#>  $ mmax   : int  6000 32000 32000 32000 16000 32000 32000 32000 64000 64000 ...
#>  $ cach   : int  256 32 32 32 32 64 64 64 64 128 ...
#>  $ chmin  : int  16 8 8 8 8 8 16 16 16 32 ...
#>  $ chmax  : int  128 32 32 32 16 32 32 32 32 64 ...
#>  $ perf   : int  198 269 220 172 132 318 367 489 636 1144 ...
#>  $ estperf: int  199 253 253 253 132 290 381 381 749 1238 ...
#> --------------
#> crabs : 'data.frame':	200 obs. of  8 variables:
#>  $ sp   : Factor w/ 2 levels "B","O": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ sex  : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ index: int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ FL   : num  8.1 8.8 9.2 9.6 9.8 10.8 11.1 11.6 11.8 11.8 ...
#>  $ RW   : num  6.7 7.7 7.8 7.9 8 9 9.9 9.1 9.6 10.5 ...
#>  $ CL   : num  16.1 18.1 19 20.1 20.3 23 23.8 24.5 24.2 25.2 ...
#>  $ CW   : num  19 20.8 22.4 23.1 23 26.5 27.1 28.4 27.8 29.3 ...
#>  $ BD   : num  7 7.4 7.7 8.2 8.2 9.8 9.8 10.4 9.7 10.3 ...
#> --------------
#> deaths :  Time-Series [1:72] from 1974 to 1980: 3035 2552 2704 2554 2014 ...
#> --------------
#> drivers :  Time-Series [1:192] from 1969 to 1985: 1687 1508 1507 1385 1632 ...
#> --------------
#> eagles : 'data.frame':	8 obs. of  5 variables:
#>  $ y: int  17 29 17 20 1 15 0 1
#>  $ n: int  24 29 27 20 12 16 28 4
#>  $ P: Factor w/ 2 levels "L","S": 1 1 1 1 2 2 2 2
#>  $ A: Factor w/ 2 levels "A","I": 1 1 2 2 1 1 2 2
#>  $ V: Factor w/ 2 levels "L","S": 1 2 1 2 1 2 1 2
#> --------------
#> epil : 'data.frame':	236 obs. of  9 variables:
#>  $ y      : num  5 3 3 3 3 5 3 3 2 4 ...
#>  $ trt    : Factor w/ 2 levels "placebo","progabide": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ base   : int  11 11 11 11 11 11 11 11 6 6 ...
#>  $ age    : int  31 31 31 31 30 30 30 30 25 25 ...
#>  $ V4     : int  0 0 0 1 0 0 0 1 0 0 ...
#>  $ subject: int  1 1 1 1 2 2 2 2 3 3 ...
#>  $ period : int  1 2 3 4 1 2 3 4 1 2 ...
#>  $ lbase  : num  -0.756 -0.756 -0.756 -0.756 -0.756 ...
#>  $ lage   : num  0.1142 0.1142 0.1142 0.1142 0.0814 ...
#> --------------
#> farms : 'data.frame':	20 obs. of  4 variables:
#>  $ Mois  : Factor w/ 4 levels "M1","M2","M4",..: 1 1 2 2 1 1 1 4 3 2 ...
#>  $ Manag : Factor w/ 4 levels "BF","HF","NM",..: 4 1 4 4 2 2 2 2 2 1 ...
#>  $ Use   : Factor w/ 3 levels "U1","U2","U3": 2 2 2 2 1 2 3 3 1 1 ...
#>  $ Manure: Factor w/ 5 levels "C0","C1","C2",..: 5 3 5 5 3 3 4 4 2 2 ...
#> --------------
#> fgl : 'data.frame':	214 obs. of  10 variables:
#>  $ RI  : num  3.01 -0.39 -1.82 -0.34 -0.58 ...
#>  $ Na  : num  13.6 13.9 13.5 13.2 13.3 ...
#>  $ Mg  : num  4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
#>  $ Al  : num  1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
#>  $ Si  : num  71.8 72.7 73 72.6 73.1 ...
#>  $ K   : num  0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
#>  $ Ca  : num  8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
#>  $ Ba  : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ Fe  : num  0 0 0 0 0 0.26 0 0 0 0.11 ...
#>  $ type: Factor w/ 6 levels "WinF","WinNF",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> forbes : 'data.frame':	17 obs. of  2 variables:
#>  $ bp  : num  194 194 198 198 199 ...
#>  $ pres: num  20.8 20.8 22.4 22.7 23.1 ...
#> --------------
#> galaxies :  num [1:82] 9172 9350 9483 9558 9775 ...
#> --------------
#> gehan : 'data.frame':	42 obs. of  4 variables:
#>  $ pair : int  1 1 2 2 3 3 4 4 5 5 ...
#>  $ time : int  1 10 22 7 3 32 12 23 8 22 ...
#>  $ cens : int  1 1 1 1 1 0 1 1 1 1 ...
#>  $ treat: Factor w/ 2 levels "6-MP","control": 2 1 2 1 2 1 2 1 2 1 ...
#> --------------
#> genotype : 'data.frame':	61 obs. of  3 variables:
#>  $ Litter: Factor w/ 4 levels "A","B","I","J": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Mother: Factor w/ 4 levels "A","B","I","J": 1 1 1 1 1 2 2 2 3 3 ...
#>  $ Wt    : num  61.5 68.2 64 65 59.7 55 42 60.2 52.5 61.8 ...
#> --------------
#> geyser : 'data.frame':	299 obs. of  2 variables:
#>  $ waiting : num  80 71 57 80 75 77 60 86 77 56 ...
#>  $ duration: num  4.02 2.15 4 4 4 ...
#> --------------
#> gilgais : 'data.frame':	365 obs. of  9 variables:
#>  $ pH00: num  7 6.7 7.8 8.9 7 8.5 7 7.4 7.4 7.2 ...
#>  $ pH30: num  9.4 9.2 9.3 8.4 8.7 8.1 9 8.4 8.7 8.9 ...
#>  $ pH80: num  7.9 9.2 8 7.8 8.5 8.2 8 8.2 8.1 8.5 ...
#>  $ e00 : int  20 12 11 55 20 90 11 10 23 15 ...
#>  $ e30 : int  37 27 44 290 150 350 44 50 110 89 ...
#>  $ e80 : int  370 80 350 460 270 360 340 270 270 220 ...
#>  $ c00 : int  60 45 20 480 180 1350 55 20 250 75 ...
#>  $ c30 : int  60 38 155 2885 1500 2350 300 550 1225 790 ...
#>  $ c80 : int  505 450 1325 1900 3200 2435 1240 1400 2425 1650 ...
#> --------------
#> hills : 'data.frame':	35 obs. of  3 variables:
#>  $ dist : num  2.5 6 6 7.5 8 8 16 6 5 6 ...
#>  $ climb: int  650 2500 900 800 3070 2866 7500 800 800 650 ...
#>  $ time : num  16.1 48.4 33.6 45.6 62.3 ...
#> --------------
#> housing : 'data.frame':	72 obs. of  5 variables:
#>  $ Sat : Ord.factor w/ 3 levels "Low"<"Medium"<..: 1 2 3 1 2 3 1 2 3 1 ...
#>  $ Infl: Factor w/ 3 levels "Low","Medium",..: 1 1 1 2 2 2 3 3 3 1 ...
#>  $ Type: Factor w/ 4 levels "Tower","Apartment",..: 1 1 1 1 1 1 1 1 1 2 ...
#>  $ Cont: Factor w/ 2 levels "Low","High": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Freq: int  21 21 28 34 22 36 10 11 36 61 ...
#> --------------
#> immer : 'data.frame':	30 obs. of  4 variables:
#>  $ Loc: Factor w/ 6 levels "C","D","GR","M",..: 5 5 5 5 5 6 6 6 6 6 ...
#>  $ Var: Factor w/ 5 levels "M","P","S","T",..: 1 3 5 4 2 1 3 5 4 2 ...
#>  $ Y1 : num  81 105.4 119.7 109.7 98.3 ...
#>  $ Y2 : num  80.7 82.3 80.4 87.2 84.2 ...
#> --------------
#> leuk : 'data.frame':	33 obs. of  3 variables:
#>  $ wbc : int  2300 750 4300 2600 6000 10500 10000 17000 5400 7000 ...
#>  $ ag  : Factor w/ 2 levels "absent","present": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ time: int  65 156 100 134 16 108 121 4 39 143 ...
#> --------------
#> mammals : 'data.frame':	62 obs. of  2 variables:
#>  $ body : num  3.38 0.48 1.35 465 36.33 ...
#>  $ brain: num  44.5 15.5 8.1 423 119.5 ...
#> --------------
#> mcycle : 'data.frame':	133 obs. of  2 variables:
#>  $ times: num  2.4 2.6 3.2 3.6 4 6.2 6.6 6.8 7.8 8.2 ...
#>  $ accel: num  0 -1.3 -2.7 0 -2.7 -2.7 -2.7 -1.3 -2.7 -2.7 ...
#> --------------
#> menarche : 'data.frame':	25 obs. of  3 variables:
#>  $ Age     : num  9.21 10.21 10.58 10.83 11.08 ...
#>  $ Total   : num  376 200 93 120 90 88 105 111 100 93 ...
#>  $ Menarche: num  0 0 0 2 2 5 10 17 16 29 ...
#> --------------
#> michelson : 'data.frame':	100 obs. of  3 variables:
#>  $ Speed: int  850 740 900 1070 930 850 950 980 980 880 ...
#>  $ Run  : Factor w/ 20 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ Expt : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> minn38 : 'data.frame':	168 obs. of  5 variables:
#>  $ hs : Factor w/ 3 levels "L","M","U": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ phs: Factor w/ 4 levels "C","E","N","O": 1 1 1 1 1 1 1 3 3 3 ...
#>  $ fol: Factor w/ 7 levels "F1","F2","F3",..: 1 2 3 4 5 6 7 1 2 3 ...
#>  $ sex: Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ f  : int  87 72 52 88 32 14 20 3 6 17 ...
#> --------------
#> motors : 'data.frame':	40 obs. of  3 variables:
#>  $ temp: int  150 150 150 150 150 150 150 150 150 150 ...
#>  $ time: int  8064 8064 8064 8064 8064 8064 8064 8064 8064 8064 ...
#>  $ cens: int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> muscle : 'data.frame':	60 obs. of  3 variables:
#>  $ Strip : Factor w/ 21 levels "S01","S02","S03",..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ Conc  : num  1 2 3 4 1 2 3 4 0.25 0.5 ...
#>  $ Length: num  15.8 20.8 22.6 23.8 20.6 26.8 28.4 27 7.2 15.4 ...
#> --------------
#> newcomb :  num [1:66] 28 -44 29 30 24 28 37 32 36 27 ...
#> --------------
#> nlschools : 'data.frame':	2287 obs. of  6 variables:
#>  $ lang : int  46 45 33 46 20 30 30 57 36 36 ...
#>  $ IQ   : num  15 14.5 9.5 11 8 9.5 9.5 13 9.5 11 ...
#>  $ class: Factor w/ 133 levels "180","280","1082",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ GS   : int  29 29 29 29 29 29 29 29 29 29 ...
#>  $ SES  : int  23 10 15 23 10 10 23 10 13 15 ...
#>  $ COMB : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> npk : 'data.frame':	24 obs. of  5 variables:
#>  $ block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...
#>  $ N    : Factor w/ 2 levels "0","1": 1 2 1 2 2 2 1 1 1 2 ...
#>  $ P    : Factor w/ 2 levels "0","1": 2 2 1 1 1 2 1 2 2 2 ...
#>  $ K    : Factor w/ 2 levels "0","1": 2 1 1 2 1 2 2 1 1 2 ...
#>  $ yield: num  49.5 62.8 46.8 57 59.8 58.5 55.5 56 62.8 55.8 ...
#> --------------
#> npr1 : 'data.frame':	104 obs. of  4 variables:
#>  $ x   : num  8 13.1 13.9 13.4 13.4 ...
#>  $ y   : num  2.38 2.5 3.13 2.63 2.13 2.13 2.5 2.25 3 2.13 ...
#>  $ perm: int  327 3369 4770 938 568 667 2561 2538 1078 1078 ...
#>  $ por : int  33 34 40 35 32 34 32 34 36 34 ...
#> --------------
#> oats : 'data.frame':	72 obs. of  4 variables:
#>  $ B: Factor w/ 6 levels "I","II","III",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ V: Factor w/ 3 levels "Golden.rain",..: 3 3 3 3 1 1 1 1 2 2 ...
#>  $ N: Factor w/ 4 levels "0.0cwt","0.2cwt",..: 1 2 3 4 1 2 3 4 1 2 ...
#>  $ Y: int  111 130 157 174 117 114 161 141 105 140 ...
#> --------------
#> painters : 'data.frame':	54 obs. of  5 variables:
#>  $ Composition: int  10 15 8 12 0 15 8 15 4 17 ...
#>  $ Drawing    : int  8 16 13 16 15 16 17 16 12 18 ...
#>  $ Colour     : int  16 4 16 9 8 4 4 7 10 12 ...
#>  $ Expression : int  3 14 7 8 0 14 8 6 4 18 ...
#>  $ School     : Factor w/ 8 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> petrol : 'data.frame':	32 obs. of  6 variables:
#>  $ No : Factor w/ 10 levels "A","B","C","D",..: 1 1 1 1 2 2 2 3 3 3 ...
#>  $ SG : num  50.8 50.8 50.8 50.8 40.8 40.8 40.8 40 40 40 ...
#>  $ VP : num  8.6 8.6 8.6 8.6 3.5 3.5 3.5 6.1 6.1 6.1 ...
#>  $ V10: int  190 190 190 190 210 210 210 217 217 217 ...
#>  $ EP : int  205 275 345 407 218 273 347 212 272 340 ...
#>  $ Y  : num  12.2 22.3 34.7 45.7 8 13.1 26.6 7.4 18.2 30.4 ...
#> --------------
#> phones : List of 2
#>  $ year : num [1:24] 50 51 52 53 54 55 56 57 58 59 ...
#>  $ calls: num [1:24] 4.4 4.7 4.7 5.9 6.6 7.3 8.1 8.8 10.6 12 ...
#> --------------
#> quine : 'data.frame':	146 obs. of  5 variables:
#>  $ Eth : Factor w/ 2 levels "A","N": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ Age : Factor w/ 4 levels "F0","F1","F2",..: 1 1 1 1 1 1 1 1 2 2 ...
#>  $ Lrn : Factor w/ 2 levels "AL","SL": 2 2 2 1 1 1 1 1 2 2 ...
#>  $ Days: int  2 11 14 5 5 13 20 22 6 6 ...
#> --------------
#> road : 'data.frame':	26 obs. of  6 variables:
#>  $ deaths : int  968 43 588 640 4743 566 325 118 115 1545 ...
#>  $ drivers: int  158 11 91 92 952 109 167 30 35 298 ...
#>  $ popden : num  64 0.4 12 34 100 ...
#>  $ rural  : num  66 5.9 33 73 118 73 5.1 3.4 0 57 ...
#>  $ temp   : int  62 30 64 51 65 42 37 41 44 67 ...
#>  $ fuel   : num  119 6.2 65 74 105 78 95 20 23 216 ...
#> --------------
#> rotifer : 'data.frame':	20 obs. of  5 variables:
#>  $ density: num  1.02 1.02 1.02 1.03 1.03 ...
#>  $ pm.y   : int  11 7 10 19 9 21 13 34 10 36 ...
#>  $ pm.tot : int  58 86 76 83 56 73 29 44 31 56 ...
#>  $ kc.y   : int  13 14 30 10 14 35 26 32 22 23 ...
#>  $ kc.tot : int  161 248 234 283 129 161 167 286 117 162 ...
#> --------------
#> ships : 'data.frame':	40 obs. of  5 variables:
#>  $ type     : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 2 2 ...
#>  $ year     : int  60 60 65 65 70 70 75 75 60 60 ...
#>  $ period   : int  60 75 60 75 60 75 60 75 60 75 ...
#>  $ service  : int  127 63 1095 1095 1512 3353 0 2244 44882 17176 ...
#>  $ incidents: int  0 0 3 4 6 18 0 11 39 29 ...
#> --------------
#> shoes : List of 2
#>  $ A: num [1:10] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
#>  $ B: num [1:10] 14 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
#> --------------
#> shrimp :  num [1:18] 32.2 33 30.8 33.8 32.2 33.3 31.7 35.7 32.4 31.2 ...
#> --------------
#> shuttle : 'data.frame':	256 obs. of  7 variables:
#>  $ stability: Factor w/ 2 levels "stab","xstab": 2 2 2 2 2 2 2 2 2 2 ...
#>  $ error    : Factor w/ 4 levels "LX","MM","SS",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ sign     : Factor w/ 2 levels "nn","pp": 2 2 2 2 2 2 1 1 1 1 ...
#>  $ wind     : Factor w/ 2 levels "head","tail": 1 1 1 2 2 2 1 1 1 2 ...
#>  $ magn     : Factor w/ 4 levels "Light","Medium",..: 1 2 4 1 2 4 1 2 4 1 ...
#>  $ vis      : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ use      : Factor w/ 2 levels "auto","noauto": 1 1 1 1 1 1 1 1 1 1 ...
#> --------------
#> snails : 'data.frame':	96 obs. of  6 variables:
#>  $ Species : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Exposure: int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ Rel.Hum : num  60 60 60 65.8 65.8 65.8 70.5 70.5 70.5 75.8 ...
#>  $ Temp    : int  10 15 20 10 15 20 10 15 20 10 ...
#>  $ Deaths  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ N       : int  20 20 20 20 20 20 20 20 20 20 ...
#> --------------
#> steam : 'data.frame':	14 obs. of  2 variables:
#>  $ Temp : int  0 10 20 30 40 50 60 70 80 85 ...
#>  $ Press: num  4.14 8.52 16.31 32.18 64.62 ...
#> --------------
#> stormer : 'data.frame':	23 obs. of  3 variables:
#>  $ Viscosity: num  14.7 27.5 42 75.7 89.7 ...
#>  $ Wt       : int  20 20 20 20 20 20 20 50 50 50 ...
#>  $ Time     : num  35.6 54.3 75.6 121.2 150.8 ...
#> --------------
#> survey : 'data.frame':	237 obs. of  12 variables:
#>  $ Sex   : Factor w/ 2 levels "Female","Male": 1 2 2 2 2 1 2 1 2 2 ...
#>  $ Wr.Hnd: num  18.5 19.5 18 18.8 20 18 17.7 17 20 18.5 ...
#>  $ NW.Hnd: num  18 20.5 13.3 18.9 20 17.7 17.7 17.3 19.5 18.5 ...
#>  $ W.Hnd : Factor w/ 2 levels "Left","Right": 2 1 2 2 2 2 2 2 2 2 ...
#>  $ Fold  : Factor w/ 3 levels "L on R","Neither",..: 3 3 1 3 2 1 1 3 3 3 ...
#>  $ Pulse : int  92 104 87 NA 35 64 83 74 72 90 ...
#>  $ Clap  : Factor w/ 3 levels "Left","Neither",..: 1 1 2 2 3 3 3 3 3 3 ...
#>  $ Exer  : Factor w/ 3 levels "Freq","None",..: 3 2 2 2 3 3 1 1 3 3 ...
#>  $ Smoke : Factor w/ 4 levels "Heavy","Never",..: 2 4 3 2 2 2 2 2 2 2 ...
#>  $ Height: num  173 178 NA 160 165 ...
#>  $ M.I   : Factor w/ 2 levels "Imperial","Metric": 2 1 NA 2 2 1 1 2 2 2 ...
#>  $ Age   : num  18.2 17.6 16.9 20.3 23.7 ...
#> --------------
#> synth.te : 'data.frame':	1000 obs. of  3 variables:
#>  $ xs: num  -0.971 -0.632 -0.774 -0.606 -0.539 ...
#>  $ ys: num  0.429 0.252 0.691 0.176 0.377 ...
#>  $ yc: int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> synth.tr : 'data.frame':	250 obs. of  3 variables:
#>  $ xs: num  0.051 -0.748 -0.773 0.218 0.373 ...
#>  $ ys: num  0.161 0.089 0.263 0.127 0.497 ...
#>  $ yc: int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> topo : 'data.frame':	52 obs. of  3 variables:
#>  $ x: num  0.3 1.4 2.4 3.6 5.7 1.6 2.9 3.4 3.4 4.8 ...
#>  $ y: num  6.1 6.2 6.1 6.2 6.2 5.2 5.1 5.3 5.7 5.6 ...
#>  $ z: int  870 793 755 690 800 800 730 728 710 780 ...
#> --------------
#> waders : 'data.frame':	15 obs. of  19 variables:
#>  $ S1 : int  12 99 197 0 77 19 1023 87 788 82 ...
#>  $ S2 : int  2027 2112 160 17 1948 203 2655 745 2174 350 ...
#>  $ S3 : int  0 9 0 0 0 48 0 1447 0 760 ...
#>  $ S4 : int  0 87 4 3 19 45 18 125 19 197 ...
#>  $ S5 : int  2070 3481 126 50 310 20 320 4330 224 858 ...
#>  $ S6 : int  39 470 17 6 1 433 49 789 178 962 ...
#>  $ S7 : int  219 2063 1 4 1 0 8 228 1 10 ...
#>  $ S8 : int  153 28 32 7 64 0 121 529 423 511 ...
#>  $ S9 : int  0 17 0 0 0 11 9 289 0 251 ...
#>  $ S10: int  15 145 2 1 22 167 82 904 195 987 ...
#>  $ S11: int  51 31 9 2 81 12 48 34 162 191 ...
#>  $ S12: int  8336 1515 477 16 2792 1 3411 1710 2161 34 ...
#>  $ S13: int  2031 1917 1 0 221 0 14 7869 25 87 ...
#>  $ S14: int  14941 17321 548 0 7422 26 9101 2247 1784 417 ...
#>  $ S15: int  19 3378 13 3 10 1790 43 4558 3 4496 ...
#>  $ S16: int  3566 20164 273 69 4519 2916 3230 40880 1254 15835 ...
#>  $ S17: int  0 177 0 1 12 473 587 7166 0 5327 ...
#>  $ S18: int  5 1759 0 0 0 658 10 1632 0 1312 ...
#>  $ S19: int  0 53 0 0 0 55 5 498 0 1020 ...
#> --------------
#> whiteside : 'data.frame':	56 obs. of  3 variables:
#>  $ Insul: Factor w/ 2 levels "Before","After": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ Temp : num  -0.8 -0.7 0.4 2.5 2.9 3.2 3.6 3.9 4.2 4.3 ...
#>  $ Gas  : num  7.2 6.9 6.4 6 5.8 5.8 5.6 4.7 5.8 5.2 ...
#> --------------
#> wtloss : 'data.frame':	52 obs. of  2 variables:
#>  $ Days  : int  0 4 7 7 11 18 24 30 32 43 ...
#>  $ Weight: num  184 183 180 180 178 ...
#> --------------
#> 
#> All data sets in R package 'cluster' :
#> --------------------------  =======
#> 
#> agriculture : 'data.frame':	12 obs. of  2 variables:
#>  $ x: num  16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21 16.4 ...
#>  $ y: num  2.7 5.7 3.5 22.2 10.9 6 14 8.5 3.5 4.3 ...
#> --------------
#> animals : 'data.frame':	20 obs. of  6 variables:
#>  $ war: int  1 1 2 1 2 2 2 2 2 1 ...
#>  $ fly: int  1 2 1 1 1 1 2 2 1 2 ...
#>  $ ver: int  1 1 2 1 2 2 2 2 2 1 ...
#>  $ end: int  1 1 1 1 2 1 1 2 2 1 ...
#>  $ gro: int  2 2 1 1 2 2 2 1 2 1 ...
#>  $ hai: int  1 2 2 2 2 2 1 1 1 1 ...
#> --------------
#> chorSub :  int [1:61, 1:10] 101 50 5 -40 -13 -49 44 285 4 -48 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : chr [1:61] "190" "191" "192" "193" ...
#>   ..$ : chr [1:10] "Al" "Ca" "Fe" "K" ...
#> --------------
#> flower : 'data.frame':	18 obs. of  8 variables:
#>  $ V1: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 2 2 ...
#>  $ V2: Factor w/ 2 levels "0","1": 2 1 2 1 2 2 1 1 2 2 ...
#>  $ V3: Factor w/ 2 levels "0","1": 2 1 1 2 1 1 1 2 1 1 ...
#>  $ V4: Factor w/ 5 levels "1","2","3","4",..: 4 2 3 4 5 4 4 2 3 5 ...
#>  $ V5: Ord.factor w/ 3 levels "1"<"2"<"3": 3 1 3 2 2 3 3 2 1 2 ...
#>  $ V6: Ord.factor w/ 18 levels "1"<"2"<"3"<"4"<..: 15 3 1 16 2 12 13 7 4 14 ...
#>  $ V7: num  25 150 150 125 20 50 40 100 25 100 ...
#>  $ V8: num  15 50 50 50 15 40 20 15 15 60 ...
#> --------------
#> plantTraits : 'data.frame':	136 obs. of  31 variables:
#>  $ pdias    : num  96.84 110.72 0.06 0.08 1.48 ...
#>  $ longindex: num  0 0 0.667 0.489 0.476 ...
#>  $ durflow  : int  2 3 3 2 3 3 3 3 3 3 ...
#>  $ height   : Ord.factor w/ 8 levels "1"<"2"<"3"<"4"<..: 7 8 2 2 2 5 2 2 3 2 ...
#>  $ begflow  : Ord.factor w/ 9 levels "1"<"2"<"3"<"4"<..: 5 4 6 7 5 4 6 3 7 4 ...
#>  $ mycor    : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 2 3 1 3 3 3 3 ...
#>  $ vegaer   : Ord.factor w/ 3 levels "0"<"1"<"2": 1 1 1 3 3 1 1 1 1 1 ...
#>  $ vegsout  : Ord.factor w/ 3 levels "0"<"1"<"2": 1 1 2 1 1 1 1 3 1 1 ...
#>  $ autopoll : Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 1 1 2 4 4 2 1 3 ...
#>  $ insects  : Ord.factor w/ 5 levels "0"<"1"<"2"<"3"<..: 5 5 1 1 4 4 3 4 4 1 ...
#>  $ wind     : Ord.factor w/ 5 levels "0"<"1"<"2"<"3"<..: 1 1 5 5 1 1 1 1 1 4 ...
#>  $ lign     : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ piq      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ ros      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ semiros  : Factor w/ 2 levels "0","1": 1 1 1 1 2 2 1 2 2 1 ...
#>  $ leafy    : Factor w/ 2 levels "0","1": 2 2 2 2 1 1 2 1 1 2 ...
#>  $ suman    : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 2 1 1 1 ...
#>  $ winan    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
#>  $ monocarp : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 2 1 ...
#>  $ polycarp : Factor w/ 2 levels "0","1": 2 2 2 2 2 1 1 2 2 2 ...
#>  $ seasaes  : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 2 1 ...
#>  $ seashiv  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
#>  $ seasver  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
#>  $ everalw  : Factor w/ 2 levels "0","1": 1 1 2 2 2 1 1 1 1 2 ...
#>  $ everparti: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
#>  $ elaio    : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
#>  $ endozoo  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ epizoo   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 2 ...
#>  $ aquat    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 2 1 ...
#>  $ windgl   : Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ unsp     : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 2 1 1 1 ...
#> --------------
#> pluton : 'data.frame':	45 obs. of  4 variables:
#>  $ Pu238: num  0.126 0.133 0.127 0.156 0.503 ...
#>  $ Pu239: num  75.8 75.5 75.2 78.9 73.3 ...
#>  $ Pu240: num  21.2 21.4 21.7 18.4 20.2 ...
#>  $ Pu241: num  2.18 2.24 2.31 1.91 4.13 ...
#> --------------
#> ruspini : 'data.frame':	75 obs. of  2 variables:
#>  $ x: int  4 5 10 9 13 13 12 15 18 19 ...
#>  $ y: int  53 63 59 77 49 69 88 75 61 65 ...
#> --------------
#> votes.repub : 'data.frame':	50 obs. of  31 variables:
#>  $ X1856: num  NA NA NA NA 18.8 ...
#>  $ X1860: num  NA NA NA NA 33 ...
#>  $ X1864: num  NA NA NA NA 58.6 ...
#>  $ X1868: num  51.4 NA NA 53.7 50.2 ...
#>  $ X1872: num  53.2 NA NA 52.2 56.4 ...
#>  $ X1876: num  40 NA NA 39.9 50.9 ...
#>  $ X1880: num  37 NA NA 39.5 48.9 ...
#>  $ X1884: num  38.4 NA NA 40.5 52.1 ...
#>  $ X1888: num  32.3 NA NA 38.1 50 ...
#>  $ X1892: num  3.95 NA NA 32.01 43.76 ...
#>  $ X1896: num  28.1 NA NA 25.1 49.1 ...
#>  $ X1900: num  34.7 NA NA 35 54.5 ...
#>  $ X1904: num  20.6 NA NA 40.2 61.9 ...
#>  $ X1908: num  24.4 NA NA 37.3 55.5 ...
#>  $ X1912: num  8.26 NA 12.74 19.73 0.58 ...
#>  $ X1916: num  22 NA 35.4 28 46.3 ...
#>  $ X1920: num  31 NA 55.4 38.7 66.2 ...
#>  $ X1924: num  27 NA 41.3 29.3 57.2 ...
#>  $ X1928: num  48.5 NA 57.6 39.3 64.7 ...
#>  $ X1932: num  14.2 NA 30.5 12.9 37.4 ...
#>  $ X1936: num  12.8 NA 26.9 17.9 31.7 ...
#>  $ X1940: num  14.3 NA 36 20.9 41.4 ...
#>  $ X1944: num  18.2 NA 40.9 29.8 43 ...
#>  $ X1948: num  19 NA 43.8 21 47.1 ...
#>  $ X1952: num  35 NA 58.4 43.8 56.4 ...
#>  $ X1956: num  39.4 NA 61 45.8 55.4 ...
#>  $ X1960: num  41.8 50.9 55.5 43.1 50.1 ...
#>  $ X1964: num  69.5 34.1 50.4 43.9 40.9 38.7 32.2 39.1 48.9 54.1 ...
#>  $ X1968: num  14 45.3 54.8 30.8 47.8 50.5 44.3 45.1 40.5 30.4 ...
#>  $ X1972: num  72.4 58.1 64.7 68.9 55 62.6 58.6 59.6 71.9 75 ...
#>  $ X1976: num  43.5 62.9 58.6 35 50.9 ...
#> --------------
#> xclara : 'data.frame':	3000 obs. of  2 variables:
#>  $ V1: num  2.07 17.94 1.08 11.12 23.71 ...
#>  $ V2: num  -3.24 15.78 7.32 14.41 2.56 ...
#> --------------
#> 
#> All data sets in R package 'rpart' :
#> --------------------------  =====
#> 
#> car.test.frame : 'data.frame':	60 obs. of  8 variables:
#>  $ Price      : int  8895 7402 6319 6635 6599 8672 7399 7254 9599 5866 ...
#>  $ Country    : Factor w/ 8 levels "France","Germany",..: 8 8 5 4 3 6 4 5 3 3 ...
#>  $ Reliability: int  4 2 4 5 5 4 5 1 5 NA ...
#>  $ Mileage    : int  33 33 37 32 32 26 33 28 25 34 ...
#>  $ Type       : Factor w/ 6 levels "Compact","Large",..: 4 4 4 4 4 4 4 4 4 4 ...
#>  $ Weight     : int  2560 2345 1845 2260 2440 2285 2275 2350 2295 1900 ...
#>  $ Disp.      : int  97 114 81 91 113 97 97 98 109 73 ...
#>  $ HP         : int  113 90 63 92 103 82 90 74 90 73 ...
#> --------------
#> car90 : 'data.frame':	111 obs. of  34 variables:
#>  $ Country     : Factor w/ 10 levels "Brazil","England",..: 5 5 4 4 4 4 10 10 10 NA ...
#>  $ Disp        : num  112 163 141 121 152 209 151 231 231 189 ...
#>  $ Disp2       : num  1.8 2.7 2.3 2 2.5 3.5 2.5 3.8 3.8 3.1 ...
#>  $ Eng.Rev     : num  2935 2505 2775 2835 2625 ...
#>  $ Front.Hd    : num  3.5 2 2.5 4 2 3 4 6 5 5.5 ...
#>  $ Frt.Leg.Room: num  41.5 41.5 41.5 42 42 42 42 42 41 41 ...
#>  $ Frt.Shld    : num  53 55.5 56.5 52.5 52 54.5 56.5 58.5 59 58 ...
#>  $ Gear.Ratio  : num  3.26 2.95 3.27 3.25 3.02 2.8 NA NA NA NA ...
#>  $ Gear2       : num  3.21 3.02 3.25 3.25 2.99 2.85 2.84 1.99 1.99 2.33 ...
#>  $ HP          : num  130 160 130 108 168 208 110 165 165 101 ...
#>  $ HP.revs     : num  6000 5900 5500 5300 5800 5700 5200 4800 4800 4400 ...
#>  $ Height      : num  47.5 50 51.5 50.5 49.5 51 49.5 50.5 51 50.5 ...
#>  $ Length      : num  177 191 193 176 175 186 189 197 197 192 ...
#>  $ Luggage     : num  16 14 17 10 12 12 16 16 16 15 ...
#>  $ Mileage     : num  NA 20 NA 27 NA NA 21 NA 23 NA ...
#>  $ Model2      : Factor w/ 21 levels "","      Turbo 4 (3)",..: 1 1 1 1 1 1 1 14 13 1 ...
#>  $ Price       : num  11950 24760 26900 18900 24650 ...
#>  $ Rear.Hd     : num  1.5 2 3 1 1 2.5 2.5 4.5 3.5 3.5 ...
#>  $ Rear.Seating: num  26.5 28.5 31 28 25.5 27 28 30.5 28.5 27.5 ...
#>  $ RearShld    : num  52 55.5 55 52 51.5 55.5 56 58.5 58.5 56.5 ...
#>  $ Reliability : Ord.factor w/ 5 levels "Much worse"<"worse"<..: 5 5 NA NA 4 NA 3 3 3 NA ...
#>  $ Rim         : Factor w/ 6 levels "R12","R13","R14",..: 3 4 4 3 3 4 3 3 3 3 ...
#>  $ Sratio.m    : num  NA NA NA NA NA NA NA NA NA NA ...
#>  $ Sratio.p    : num  0.86 0.96 0.97 0.71 0.88 0.78 0.76 0.83 0.87 0.88 ...
#>  $ Steering    : Factor w/ 3 levels "manual","power",..: 2 2 2 2 2 2 2 2 2 2 ...
#>  $ Tank        : num  13.2 18 21.1 15.9 16.4 21.1 15.7 18 18 16.5 ...
#>  $ Tires       : Factor w/ 30 levels "145","145/80",..: 16 20 20 8 17 28 13 23 23 22 ...
#>  $ Trans1      : Factor w/ 4 levels "","man.4","man.5",..: 3 3 3 3 3 3 1 1 1 1 ...
#>  $ Trans2      : Factor w/ 4 levels "","auto.3","auto.4",..: 3 3 2 2 3 3 2 3 3 3 ...
#>  $ Turning     : num  37 42 39 35 35 39 41 43 42 41 ...
#>  $ Type        : Factor w/ 6 levels "Compact","Large",..: 4 3 3 1 1 3 3 2 2 NA ...
#>  $ Weight      : num  2700 3265 2935 2670 2895 ...
#>  $ Wheel.base  : num  102 109 106 100 101 109 105 111 111 108 ...
#>  $ Width       : num  67 69 71 67 65 69 69 72 72 71 ...
#> --------------
#> cu.summary : 'data.frame':	117 obs. of  5 variables:
#>  $ Price      : num  11950 6851 6995 8895 7402 ...
#>  $ Country    : Factor w/ 10 levels "Brazil","England",..: 5 5 10 10 10 7 5 6 6 7 ...
#>  $ Reliability: Ord.factor w/ 5 levels "Much worse"<"worse"<..: 5 NA 1 4 2 4 NA 5 5 2 ...
#>  $ Mileage    : num  NA NA NA 33 33 37 NA NA 32 NA ...
#>  $ Type       : Factor w/ 6 levels "Compact","Large",..: 4 4 4 4 4 4 4 4 4 4 ...
#> --------------
#> kyphosis : 'data.frame':	81 obs. of  4 variables:
#>  $ Kyphosis: Factor w/ 2 levels "absent","present": 1 1 2 1 1 1 1 1 1 2 ...
#>  $ Age     : int  71 158 128 2 1 1 61 37 113 59 ...
#>  $ Number  : int  3 3 4 5 4 2 2 3 2 6 ...
#>  $ Start   : int  5 14 5 1 15 16 17 16 16 12 ...
#> --------------
#> solder : 
#>   solder : 'data.frame':	900 obs. of  6 variables:
#>   $ Opening: Factor w/ 3 levels "L","M","S": 1 1 1 1 1 1 1 1 1 1 ...
#>   $ Solder : Factor w/ 2 levels "Thick","Thin": 1 1 1 1 1 1 1 1 1 1 ...
#>   $ Mask   : Factor w/ 5 levels "A1.5","A3","A6",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   $ PadType: Factor w/ 10 levels "D4","D6","D7",..: 9 9 9 1 1 1 4 4 4 2 ...
#>   $ Panel  : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
#>   $ skips  : num  0 0 0 0 0 0 0 0 0 0 ...
#>   solder.balance : 'data.frame':	720 obs. of  6 variables:
#>   $ Opening: Factor w/ 3 levels "L","M","S": 1 1 1 1 1 1 1 1 1 1 ...
#>   $ Solder : Factor w/ 2 levels "Thick","Thin": 1 1 1 1 1 1 1 1 1 1 ...
#>   $ Mask   : Factor w/ 4 levels "A1.5","A3","B3",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   $ PadType: Factor w/ 10 levels "D4","D6","D7",..: 9 9 9 1 1 1 4 4 4 2 ...
#>   $ Panel  : int  1 2 3 1 2 3 1 2 3 1 ...
#>   $ skips  : int  0 0 0 0 0 0 0 0 0 0 ...
#> --------------
#> stagec : 'data.frame':	146 obs. of  8 variables:
#>  $ pgtime : num  6.1 9.4 5.2 3.2 1.9 4.8 5.8 7.3 3.7 15.9 ...
#>  $ pgstat : int  0 0 1 1 1 0 0 0 1 0 ...
#>  $ age    : int  64 62 59 62 64 69 75 71 73 64 ...
#>  $ eet    : int  2 1 2 2 2 1 2 2 2 2 ...
#>  $ g2     : num  10.26 NA 9.99 3.57 22.56 ...
#>  $ grade  : int  2 3 3 2 4 3 2 3 3 3 ...
#>  $ gleason: int  4 8 7 4 8 7 NA 7 6 7 ...
#>  $ ploidy : Factor w/ 3 levels "diploid","tetraploid",..: 1 3 1 1 2 1 2 3 1 2 ...
#> --------------
#> 
#> All data sets in R package 'sfsmisc' :
#> --------------------------  =======
#> 
#> potatoes : 'data.frame':	64 obs. of  5 variables:
#>  $ pos     : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ treat   : Factor w/ 16 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ nitrogen: Factor w/ 4 levels "0","1","2","4": 1 1 1 1 2 2 2 2 3 3 ...
#>  $ potash  : Factor w/ 4 levels "0","1","2","4": 1 2 3 4 1 2 3 4 1 2 ...
#>  $ yield   : num  318 363 368 382 314 ...
#> --------------
#> 
#> All data sets in R package 'graphics' :
#> --------------------------  ========
#> 
#> 
#> All data sets in R package 'grDevices' :
#> --------------------------  =========
#> 
#> 
#> All data sets in R package 'utils' :
#> --------------------------  =====
#> 
#> 
#> All data sets in R package 'methods' :
#> --------------------------  =======
#>