Similar to R's cut function, this transforms a numeric column into a discretized column, with breaks specified through the splits parameter.

ft_bucketizer(
  x,
  input_col = NULL,
  output_col = NULL,
  splits = NULL,
  input_cols = NULL,
  output_cols = NULL,
  splits_array = NULL,
  handle_invalid = "error",
  uid = random_string("bucketizer_"),
  ...
)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

splits

A numeric vector of cutpoints, indicating the bucket boundaries.

input_cols

Names of input columns.

output_cols

Names of output columns.

splits_array

Parameter for specifying multiple splits parameters. Each element in this array can be used to map continuous features into buckets.

handle_invalid

(Spark 2.1.0+) Param for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Default: "error"

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Value

The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.

Examples

if (FALSE) { # \dontrun{
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
  ft_bucketizer(
    input_col = "Sepal_Length",
    output_col = "Sepal_Length_bucket",
    splits = c(0, 4.5, 5, 8)
  ) %>%
  select(Sepal_Length, Sepal_Length_bucket, Species)
} # }