Perform classification using linear support vector machines (SVM). This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.
ml_linear_svc(
x,
formula = NULL,
fit_intercept = TRUE,
reg_param = 0,
max_iter = 100,
standardization = TRUE,
weight_col = NULL,
tol = 1e-06,
threshold = 0,
aggregation_depth = 2,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
raw_prediction_col = "rawPrediction",
uid = random_string("linear_svc_"),
...
)A spark_connection, ml_pipeline, or a tbl_spark.
Used when x is a tbl_spark. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.
Boolean; should the model be fit with an intercept term?
Regularization parameter (aka lambda)
The maximum number of iterations to use.
Whether to standardize the training features before fitting the model.
The name of the column to use as weights for the model fit.
Param for the convergence tolerance for iterative algorithms.
in binary classification prediction, in range [0, 1].
(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2).
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula.
Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula.
Prediction column name.
Raw prediction (a.k.a. confidence) column name.
A character string used to uniquely identify the ML estimator.
Optional arguments; see Details.
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
Other ml algorithms:
ml_aft_survival_regression(),
ml_decision_tree_classifier(),
ml_gbt_classifier(),
ml_generalized_linear_regression(),
ml_isotonic_regression(),
ml_linear_regression(),
ml_logistic_regression(),
ml_multilayer_perceptron_classifier(),
ml_naive_bayes(),
ml_one_vs_rest(),
ml_random_forest_classifier()
if (FALSE) { # \dontrun{
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
filter(Species != "setosa") %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
svc_model <- iris_training %>%
ml_linear_svc(Species ~ .)
pred <- ml_predict(svc_model, iris_test)
ml_binary_classification_evaluator(pred)
} # }