These routines allow you to manage your connections to Spark.
Call `spark_disconnect()` on each open Spark connection
Usage
spark_connect(
master,
spark_home = Sys.getenv("SPARK_HOME"),
method = c("shell", "livy", "databricks", "test", "qubole", "synapse"),
app_name = "sparklyr",
version = NULL,
config = spark_config(),
extensions = sparklyr::registered_extensions(),
packages = NULL,
scala_version = NULL,
...
)
spark_connection_is_open(sc)
spark_disconnect(sc, ...)
spark_disconnect_all(...)
spark_submit(
master,
file,
spark_home = Sys.getenv("SPARK_HOME"),
app_name = "sparklyr",
version = NULL,
config = spark_config(),
extensions = sparklyr::registered_extensions(),
scala_version = NULL,
...
)Arguments
- master
Spark cluster url to connect to. Use
"local"to connect to a local instance of Spark installed viaspark_install.- spark_home
The path to a Spark installation. Defaults to the path provided by the
SPARK_HOMEenvironment variable. IfSPARK_HOMEis defined, it will always be used unless theversionparameter is specified to force the use of a locally installed version.- method
The method used to connect to Spark. Default connection method is
"shell"to connect using spark-submit, use"livy"to perform remote connections using HTTP, or"databricks"when using a Databricks clusters.- app_name
The application name to be used while running in the Spark cluster.
- version
The version of Spark to use. Required for
"local"Spark connections, optional otherwise.- config
Custom configuration for the generated Spark connection. See
spark_configfor details.- extensions
Extension R packages to enable for this connection. By default, all packages enabled through the use of
sparklyr::register_extensionwill be passed here.- packages
A list of Spark packages to load. For example,
"delta"or"kafka"to enable Delta Lake or Kafka. Also supports full versions like"io.delta:delta-core_2.11:0.4.0". This is similar to adding packages into thesparklyr.shell.packagesconfiguration option. Notice that theversionparameter is used to choose the correct package, otherwise assumes the latest version is being used.- scala_version
Load the sparklyr jar file that is built with the version of Scala specified (this currently only makes sense for Spark 2.4, where sparklyr will by default assume Spark 2.4 on current host is built with Scala 2.11, and therefore `scala_version = '2.12'` is needed if sparklyr is connecting to Spark 2.4 built with Scala 2.12)
- ...
Additional params to be passed to each `spark_disconnect()` call (e.g., `terminate = TRUE`)
- sc
A
spark_connection.- file
Path to R source file to submit for batch execution.
Details
By default, when using method = "livy", jars are downloaded from GitHub. But
an alternative path (local to Livy server or on HDFS or HTTP(s)) to sparklyr
JAR can also be specified through the sparklyr.livy.jar setting.
Examples
conf <- spark_config()
conf$`sparklyr.shell.conf` <- c(
"spark.executor.extraJavaOptions=-Duser.timezone='UTC'",
"spark.driver.extraJavaOptions=-Duser.timezone='UTC'",
"spark.sql.session.timeZone='UTC'"
)
sc <- spark_connect(
master = "spark://HOST:PORT", config = conf
)
connection_is_open(sc)
#> [1] TRUE
spark_disconnect(sc)