Evaluate Kriging standard error of prediction over a grid.
Usage
semat(obj, xl, xu, yl, yu, n, se)
Arguments
- obj
object returned by surf.gls
- xl
limits of the rectangle for grid
- xu
ditto
- yl
ditto
- yu
ditto
- n
use n x n grid within the rectangle
- se
standard error at distance zero as a multiple of the supplied
covariance. Otherwise estimated, and it assumed that a correlation
function was supplied.
Value
list with components x, y and z suitable for contour and image.
References
Ripley, B. D. (1981) Spatial Statistics. Wiley.
Venables, W. N. and Ripley, B. D. (2002)
Modern Applied Statistics with S. Fourth edition. Springer.
Examples
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
contour(sesurf, levels=c(22,25))