Get rid of summarytools-specific attributes to get a simple data structure (matrix, array, ...), which can be easily manipulated.

zap_attr(x, except = c("dim", "dimnames"))

Arguments

x

An object with attributes

except

Character. A vector of attribute names to preserve. By default, “dim” and “dimnames” are preserved.

Details

If the object contains grouped results:

  • The inner objects will lose their attributes

  • The “stby” class will be replaced with “by”

  • The “dim” and “dimnames” attributes will be set to available relevant values, but expect slight differences between objects created with stby() vs group_by().

Examples

data(tobacco)
zap_attr(descr(tobacco))
#>                      BMI           age cigs.per.day     samp.wgts
#> Mean        2.573082e+01   49.60205128 6.782383e+00  1.000000e+00
#> Std.Dev     4.488068e+00   18.28918947 1.187654e+01  8.387755e-02
#> Min         8.825777e+00   18.00000000 0.000000e+00  8.614232e-01
#> Q1          2.292600e+01   34.00000000 0.000000e+00  8.614232e-01
#> Median      2.561962e+01   50.00000000 0.000000e+00  1.044177e+00
#> Q3          2.865065e+01   66.00000000 1.100000e+01  1.049383e+00
#> Max         3.943901e+01   80.00000000 4.000000e+01  1.062500e+00
#> MAD         4.175650e+00   23.72160000 0.000000e+00  7.718429e-03
#> IQR         5.721849e+00   32.00000000 1.100000e+01  1.879595e-01
#> CV          1.744238e-01    0.36871841 1.751086e+00  8.387755e-02
#> Skewness    1.673769e-02   -0.04027808 1.536599e+00 -1.035360e+00
#> SE.Skewness 7.836620e-02    0.07832613 7.872967e-02  7.734382e-02
#> Kurtosis    2.550406e-01   -1.25924962 9.036813e-01 -9.033348e-01
#> N.Valid     9.740000e+02  975.00000000 9.650000e+02  1.000000e+03
#> N           1.000000e+03 1000.00000000 1.000000e+03  1.000000e+03
#> Pct.Valid   9.740000e+01   97.50000000 9.650000e+01  1.000000e+02
zap_attr(freq(tobacco$gender))
#>       Freq % Valid % Valid Cum. % Total % Total Cum.
#> F      489      50           50    48.9         48.9
#> M      489      50          100    48.9         97.8
#> <NA>    22      NA           NA     2.2        100.0
#> Total 1000     100          100   100.0        100.0