predict.coxph.Rd
Compute fitted values and regression terms for a model fitted by
coxph
the results of a coxph fit.
Optional new data at which to do predictions. If absent predictions are for the data frame used in the original fit. When coxph has been called with a formula argument created in another context, i.e., coxph has been called within another function and the formula was passed as an argument to that function, there can be problems finding the data set. See the note below.
the type of predicted value.
Choices are the linear predictor ("lp"
), the risk score exp(lp)
("risk"
),
the expected number of events given the covariates and follow-up time
("expected"
), and the terms of the linear predictor
("terms"
).
The survival probability for a subject is equal to exp(-expected).
if TRUE, pointwise standard errors are produced for the predictions.
applies only when the newdata
argument is present, and defines
the missing value action for the new data. The default is to include
all observations.
When there is no newdata, then the behavior of missing is dictated by
the na.action option of the original fit.
if type="terms", this argument can be used to specify which terms should be included; the default is all.
optional vector of subject identifiers. If specified, the output will contain one entry per subject rather than one entry per observation.
reference for centering predictions, see details below
For future methods
a vector or matrix of predictions, or a list containing the predictions (element "fit") and their standard errors (element "se.fit") if the se.fit option is TRUE.
The Cox model is a relative risk model; predictions
of type "linear predictor", "risk", and "terms" are all
relative to the sample from which they came. By default, the reference
value for each of these is the mean covariate within strata.
The underlying reason is both statistical and practial.
First, a Cox model only predicts relative risks
between pairs of subjects within the same strata, and hence the addition
of a constant to any covariate, either overall or only within a
particular stratum, has no effect on the fitted results.
Second, downstream calculations depend on the risk score exp(linear
predictor), which will fall prey to numeric overflow for a linear
predictor greater than .Machine\$double.max.exp
.
The coxph
routines try to approximately center the predictors out
of self protection.
Using the reference="strata"
option is the safest centering,
since strata occassionally have different means.
When the results of predict
are used in further calculations it
may be desirable to use a single reference level for all observations.
Use of reference="sample"
will use object$means
, which agrees
with the linear.predictors
component of the coxph object.
Predictions of type="terms"
are almost invariably passed
forward to further calculation, so for these we default to using
the sample as the reference.
A reference of "zero"
causes no centering to be done.
Predictions of type "expected" or "survival" incorporate the baseline
hazard and are thus absolute instead of relative; the
reference
option has no effect on these.
These values depend on the follow-up time for the subjects as
well as covariates so the newdata
argument needs to include both
the right and left hand side variables from the formula.
(The status variable will not be used, but is required since the
underlying code needs to reconstruct the entire formula.)
Models that contain a frailty
term are a special case: due
to the technical difficulty, when there is a newdata
argument the
predictions will always be for a random effect of zero.
For predictions of type expected a user will normally want to use
\(\Lambda(t_i)\), i.e., the cumulative hazard at the individual
follow-up time \(t_i\)of each individual subject.
This is E in the martingale residual O-E and plays a natural role in
assessments of model validation (Crowson 2016).
For predictions of type survival, on the other hand, a user
will normally want S(tau), where tau is a single pre-specified time
point which is the same for all subjects, e.g., predicted 5 year
survival. The newdata
data set should contain actual survival
time(s) for each subject for the first case, as the survival time variable(s),
and the target time tau in the second case; (0, tau) for (time1, time2)
data.
For counting process data with (time1, time2) form, residuals of
type expected
estimate the increment in hazard over said interval, and
those of type survival
the probability of an event at time2 given
that the observation is still alive at time1. The estimated hazards
over two intervals (t1, t2) and (t2, t3) add to the total hazard over
the interval (t1, t3), and the variances also add: the formulas treat these as
independent increments, given the covariates.
Estimated survivals multiply, but variances do not add.
Some predictions can be obtained directly from the coxph object, and for
others it is necessary for the routine to have the entirety of the
original data set, e.g., for type = terms
or if standard errors
are requested.
This extra information is saved in the coxph object if
model=TRUE
, if not the original data is reconstructed.
If it is known that such residuals will be required overall execution will be
slightly faster if the model information is saved.
In some cases the reconstruction can fail.
The most common is when coxph has been called inside another function
and the formula was passed as one of the arguments to that enclosing
function. Another is when the data set has changed between the original
call and the time of the prediction call.
In each of these the simple solution is to add model=TRUE
to the
original coxph call.
C Crowson, E Atkinson and T Therneau, Assessing calibration of prognostic risk scores, Stat Methods Med Res, 2016.
options(na.action=na.exclude) # retain NA in predictions
fit <- coxph(Surv(time, status) ~ age + ph.ecog + strata(inst), lung)
#lung data set has status coded as 1/2
mresid <- (lung$status-1) - predict(fit, type='expected') #Martingale resid
predict(fit,type="lp")
#> 1 2 3 4 5 6
#> 0.215495605 -0.423532231 -0.559265038 0.183469551 -0.539432878 0.248095483
#> 7 8 9 10 11 12
#> 0.406461814 0.489169379 -0.047448917 0.327284344 0.040389888 0.550315552
#> 13 14 15 16 17 18
#> -0.115925255 NA 0.055807340 0.110906025 0.050567124 0.493760215
#> 19 20 21 22 23 24
#> 0.557645717 -0.004245606 -0.127236322 -0.621260082 -0.319524466 -0.575882288
#> 25 26 27 28 29 30
#> -0.345688084 0.202851214 -0.428371074 1.313400384 -0.021210624 0.761244928
#> 31 32 33 34 35 36
#> 0.191540147 0.749933860 0.180240469 0.459827013 0.672213041 0.625512121
#> 37 38 39 40 41 42
#> 0.565173220 0.085767683 0.761244928 0.076972823 0.330513426 0.511791514
#> 43 44 45 46 47 48
#> -0.439682141 0.660901974 -0.164699618 0.496950353 -0.381077937 0.091073865
#> 49 50 51 52 53 54
#> -0.354839644 -0.175654221 0.192873470 -0.447487689 -0.450985298 -0.562055013
#> 55 56 57 58 59 60
#> 0.063012023 -0.516810744 -0.297203343 0.474684682 0.034518529 0.076972823
#> 61 62 63 64 65 66
#> 0.678283893 -0.045992266 0.176731471 -0.149858457 0.158940268 0.718790633
#> 67 68 69 70 71 72
#> 0.539004484 -0.308514410 -0.543216443 0.153500561 -0.479261384 -0.078592144
#> 73 74 75 76 77 78
#> 0.946919127 -0.073531430 -0.049489875 0.214162281 -0.641232484 0.029078821
#> 79 80 81 82 83 84
#> -0.276488357 -0.392389004 -0.439682141 0.001411510 -0.410013004 -0.151289480
#> 85 86 87 88 89 90
#> -0.292311495 0.198744830 -0.039921414 -0.530162769 -0.123010230 0.738622793
#> 91 92 93 94 95 96
#> -0.743642023 0.050567124 0.285269157 0.108857156 -0.437633273 0.796634781
#> 97 98 99 100 101 102
#> 0.158940268 0.214162281 -0.161169524 -0.400910096 -0.562055013 0.176122695
#> 103 104 105 106 107 108
#> 0.012722577 0.108256292 0.617817211 0.157606945 -0.189452466 0.110906025
#> 109 110 111 112 113 114
#> -0.026867740 0.797968104 -0.411394980 -0.149248522 0.369011703 -0.344354760
#> 115 116 117 118 119 120
#> 0.006456686 0.783867062 0.503880355 0.693378524 0.527693417 0.244122624
#> 121 122 123 124 125 126
#> -0.464038972 0.449575370 0.158940268 0.500480446 -0.426322206 0.005322855
#> 127 128 129 130 131 132
#> -0.368298829 0.134984810 0.652115157 -0.617153698 0.131479291 -0.190511890
#> 133 134 135 136 137 138
#> -0.643882217 0.001411510 -0.460255408 0.666972826 0.067118407 0.583884010
#> 139 140 141 142 143 144
#> -0.036137850 -0.399002948 0.747892903 0.215495605 0.630552446 0.088283890
#> 145 146 147 148 149 150
#> -0.240346995 -0.200763533 -0.558074111 -0.179200822 -0.232577411 -0.524505653
#> 151 152 153 154 155 156
#> 0.171077519 -0.633704981 -0.331136545 -0.190511890 0.477441161 NA
#> 157 158 159 160 161 162
#> -0.031097524 0.736573925 0.123673743 -0.013515715 -0.585704233 -0.038186718
#> 163 164 165 166 167 168
#> 0.466547245 0.108256292 -0.209943887 -0.716429053 -0.206413793 -0.699828778
#> 169 170 171 172 173 174
#> 0.085634157 -0.424865554 0.069277914 -0.441093652 0.107445646 -0.874783994
#> 175 176 177 178 179 180
#> -0.047448917 0.046655779 0.557645717 0.001411510 -0.047448917 -0.667994646
#> 181 182 183 184 185 186
#> -0.513194586 -0.776965291 -0.614629447 0.019390401 -0.583220496 -0.651086900
#> 187 188 189 190 191 192
#> 0.859584155 -0.536642904 0.063145548 -0.712882451 0.024398388 0.369338475
#> 193 194 195 196 197 198
#> -0.023370131 0.076972823 0.061878192 -0.368310218 -0.003231734 0.074931865
#> 199 200 201 202 203 204
#> -0.629921417 -0.037164935 0.063145548 0.084500326 -0.574393166 -0.627131442
#> 205 206 207 208 209 210
#> -0.658814293 0.302547317 -0.410314015 0.516017606 0.131487202 -0.302547317
#> 211 212 213 214 215 216
#> -0.539432878 0.153500561 0.119700884 0.409991908 -0.149858457 -0.149858457
#> 217 218 219 220 221 222
#> -0.156943432 0.781826105 0.477858312 -0.452404719 0.016633922 -0.081992053
#> 223 224 225 226 227 228
#> 0.212705630 0.224016697 -0.750726998 0.703662506 0.142189494 -0.085165683
predict(fit,type="expected")
#> 1 2 3 4 5 6 7
#> 0.74602570 0.57892506 1.28411487 0.65144995 2.53474317 2.59935704 0.94925558
#> 8 9 10 11 12 13 14
#> 1.07812821 0.63137435 0.55866807 0.31809979 1.96068120 2.96879741 NA
#> 15 16 17 18 19 20 21
#> 2.14464916 0.39248100 1.01652225 2.53985878 0.23734050 0.15454932 0.41781121
#> 22 23 24 25 26 27 28
#> 0.03725873 1.07425239 0.73304358 0.71922541 1.96068538 0.91425760 0.50868712
#> 29 30 31 32 33 34 35
#> 1.07651355 0.10727131 1.64348011 0.22335391 1.34246079 0.18355514 0.25427967
#> 36 37 38 39 40 41 42
#> 0.57948554 3.87217595 1.42062915 0.50341133 2.84274107 1.90670187 0.39302876
#> 43 44 45 46 47 48 49
#> 1.67374788 0.56009982 1.95081502 0.39930277 0.62185372 1.18384892 1.08920268
#> 50 51 52 53 54 55 56
#> 1.36922169 2.72429090 0.31557423 0.04821232 0.41960993 3.07164840 0.12000994
#> 57 58 59 60 61 62 63
#> 0.07406041 0.17908976 1.74520134 1.10195998 1.47697029 0.54523697 0.51461493
#> 64 65 66 67 68 69 70
#> 0.14292300 0.18117365 0.20227027 0.70028855 1.00636733 0.31133532 0.64126839
#> 71 72 73 74 75 76 77
#> 0.96177399 0.46743320 0.53451717 0.16345589 0.86294287 1.44797843 1.06953116
#> 78 79 80 81 82 83 84
#> 1.19014609 0.03668315 0.33061179 1.90397464 0.08944145 0.20857044 0.28585781
#> 85 86 87 88 89 90 91
#> 1.15723874 0.87295638 1.19851949 0.14216346 1.37338069 0.92021616 1.05096221
#> 92 93 94 95 96 97 98
#> 0.27465006 0.47403241 0.26750987 1.01622540 0.08901343 0.32456045 0.93961618
#> 99 100 101 102 103 104 105
#> 0.85179714 0.14362313 0.89733451 1.74403467 0.70225748 0.15754565 0.36065915
#> 106 107 108 109 110 111 112
#> 0.41227011 0.29089093 0.02759911 2.54485283 1.57705739 0.02915789 0.51482474
#> 113 114 115 116 117 118 119
#> 1.51254632 0.24392791 1.95773713 0.16855572 0.69132758 2.65613080 1.04014324
#> 120 121 122 123 124 125 126
#> 0.89157179 0.40187641 0.23829273 1.56065440 0.17535194 1.02778525 0.18442460
#> 127 128 129 130 131 132 133
#> 0.08051722 0.20596405 1.70473379 0.86354367 0.72017118 0.27146814 0.48487446
#> 134 135 136 137 138 139 140
#> 1.10114414 0.51567846 1.46035831 0.93950468 1.54314328 1.12143879 0.60372302
#> 141 142 143 144 145 146 147
#> 1.46022571 0.88081136 0.66047105 0.18347489 0.51981101 0.28761918 0.50825077
#> 148 149 150 151 152 153 154
#> 0.15268490 0.06671446 0.32571666 0.39746179 0.39772440 0.38939509 0.20940447
#> 155 156 157 158 159 160 161
#> 0.62171971 NA 0.34080256 0.46159657 0.47539058 1.00662370 0.21472196
#> 162 163 164 165 166 167 168
#> 0.54619593 0.50111574 0.24481910 0.51248548 0.19954882 0.25566706 0.78817717
#> 169 170 171 172 173 174 175
#> 0.44798249 0.43113659 0.44847984 1.48341994 0.46620310 0.37028208 0.86812344
#> 176 177 178 179 180 181 182
#> 0.43844817 0.94494334 0.25935783 0.37625255 0.20649507 0.25048304 0.37569346
#> 183 184 185 186 187 188 189
#> 0.40334526 0.39324727 0.36799524 0.39552828 1.77501387 0.24422514 0.38021709
#> 190 191 192 193 194 195 196
#> 0.21501843 0.51818689 0.08032921 0.22774986 0.71502728 0.36774267 0.39500663
#> 197 198 199 200 201 202 203
#> 0.38445105 0.97727710 0.43520510 0.16869554 0.17219830 0.05878035 0.21716448
#> 204 205 206 207 208 209 210
#> 0.18384556 0.18192355 0.64682101 0.35975276 0.70106697 1.03414013 0.35317899
#> 211 212 213 214 215 216 217
#> 0.42921059 0.47944086 0.40234009 0.25017393 0.04470913 0.27054309 0.22137404
#> 218 219 220 221 222 223 224
#> 1.18698635 0.50681607 0.11190719 0.11327702 0.28954125 0.33611081 0.74776723
#> 225 226 227 228
#> 0.12225025 0.00000000 0.35218786 0.10231300
predict(fit,type="risk",se.fit=TRUE)
#> $fit
#> 1 2 3 4 5 6 7 8
#> 1.2404765 0.6547301 0.5716290 1.2013784 0.5830788 1.2815823 1.5014958 1.6309609
#> 9 10 11 12 13 14 15 16
#> 0.9536592 1.3871959 1.0412167 1.7338000 0.8905418 NA 1.0573939 1.1172899
#> 17 18 19 20 21 22 23 24
#> 1.0518675 1.6384656 1.7465558 0.9957634 0.8805256 0.5372670 0.7264944 0.5622086
#> 25 26 27 28 29 30 31 32
#> 0.7077332 1.2248902 0.6515696 3.7187976 0.9790127 2.1409399 1.2111135 2.1168600
#> 33 34 35 36 37 38 39 40
#> 1.1975053 1.5838000 1.9585669 1.8692030 1.7597526 1.0895532 2.1409399 1.0800127
#> 41 42 43 44 45 46 47 48
#> 1.3916825 1.6682773 0.6442412 1.9365383 0.8481484 1.6437009 0.6831246 1.0953499
#> 49 50 51 52 53 54 55 56
#> 0.7012859 0.8389080 1.2127293 0.6392321 0.6370002 0.5700364 1.0650396 0.5964197
#> 57 58 59 60 61 62 63 64
#> 0.7428929 1.6075072 1.0351212 1.0800127 1.9704933 0.9550493 1.1933106 0.8608298
#> 65 66 67 68 69 70 71 72
#> 1.1722679 2.0519501 1.7142994 0.7345374 0.5808769 1.1659084 0.6192406 0.9244169
#> 73 74 75 76 77 78 79 80
#> 2.5777557 0.9291069 0.9517148 1.2388237 0.5266429 1.0295057 0.7584424 0.6754413
#> 81 82 83 84 85 86 87 88
#> 0.6442412 1.0014125 0.6636416 0.8595988 0.7465360 1.2198707 0.9608649 0.5885092
#> 89 90 91 92 93 94 95 96
#> 0.8842546 2.0930510 0.4753794 1.0518675 1.3301200 1.1150031 0.6455625 2.2180641
#> 97 98 99 100 101 102 103 104
#> 1.1722679 1.2388237 0.8511478 0.6697103 0.5700364 1.1925844 1.0128039 1.1143333
#> 105 106 107 108 109 110 111 112
#> 1.8548748 1.1707060 0.8274120 1.1172899 0.9734900 2.2210235 0.6627251 0.8613550
#> 113 114 115 116 117 118 119 120
#> 1.4463045 0.7086775 1.0064776 2.1899245 1.6551313 2.0004627 1.6950181 1.2765009
#> 121 122 123 124 125 126 127 128
#> 0.6287391 1.5676464 1.1722679 1.6495136 0.6529059 1.0053370 0.6919104 1.1445194
#> 129 130 131 132 133 134 135 136
#> 1.9195968 0.5394778 1.1405143 0.8265359 0.5252493 1.0014125 0.6311224 1.9483304
#> 137 138 139 140 141 142 143 144
#> 1.0694221 1.7929889 0.9645073 0.6709887 2.1125440 1.2404765 1.8786481 1.0922982
#> 145 146 147 148 149 150 151 152
#> 0.7863550 0.8181059 0.5723102 0.8359380 0.7924884 0.5918479 1.1865827 0.5306222
#> 153 154 155 156 157 158 159 160
#> 0.7181071 0.8265359 1.6119444 NA 0.9693810 2.0887670 1.1316466 0.9865752
#> 161 162 163 164 165 166 167 168
#> 0.5567137 0.9625332 1.5944793 1.1143333 0.8106297 0.4884935 0.8134964 0.4966703
#> 169 170 171 172 173 174 175 176
#> 1.0894077 0.6538577 1.0717340 0.6433325 1.1134303 0.4169521 0.9536592 1.0477613
#> 177 178 179 180 181 182 183 184
#> 1.7465558 1.0014125 0.9536592 0.5127358 0.5985803 0.4597993 0.5408413 1.0195796
#> 185 186 187 188 189 190 191 192
#> 0.5580981 0.5214787 2.3621782 0.5847079 1.0651819 0.4902291 1.0246985 1.4467772
#> 193 194 195 196 197 198 199 200
#> 0.9769008 1.0800127 1.0638328 0.6919025 0.9967735 1.0778107 0.5326337 0.9635172
#> 201 202 203 204 205 206 207 208
#> 1.0651819 1.0881732 0.5630464 0.5341218 0.5174645 1.3533017 0.6634419 1.6753425
#> 209 210 211 212 213 214 215 216
#> 1.1405233 0.7389335 0.5830788 1.1659084 1.1271597 1.5068056 0.8608298 0.8608298
#> 217 218 219 220 221 222 223 224
#> 0.8547524 2.1854595 1.6126170 0.6360967 1.0167730 0.9212793 1.2370205 1.2510919
#> 225 226 227 228
#> 0.4720233 2.0211416 1.1527951 0.9183601
#>
#> $se.fit
#> 1 2 3 4 5 6
#> 0.094027169 0.096340319 0.096185061 0.110144705 0.091221886 0.124003567
#> 7 8 9 10 11 12
#> 0.106470052 0.135893441 0.104263809 0.115204660 0.048057506 0.157626321
#> 13 14 15 16 17 18
#> 0.058398830 NA 0.078593550 0.044525715 0.047523899 0.139753275
#> 19 20 21 22 23 24
#> 0.246130195 0.051683778 0.050651208 0.106747848 0.121191090 0.095563151
#> 25 26 27 28 29 30
#> 0.135232494 0.077970827 0.084316589 0.541641696 0.047411370 0.244541270
#> 31 32 33 34 35 36
#> 0.067316853 0.236761412 0.222247496 0.143779967 0.246770836 0.214866749
#> 37 38 39 40 41 42
#> 0.186808694 0.027994134 0.244541270 0.017746688 0.094899948 0.150429986
#> 43 44 45 46 47 48
#> 0.082038635 0.251128992 0.071539989 0.172653479 0.157627962 0.046664065
#> 49 50 51 52 53 54
#> 0.203630081 0.147427688 0.071868116 0.087051165 0.126710133 0.091078334
#> 55 56 57 58 59 60
#> 0.030346404 0.094111921 0.072518580 0.232795318 0.092391388 0.017746688
#> 61 62 63 64 65 66
#> 0.207337260 0.162712161 0.126511646 0.038549743 0.042876315 0.234595146
#> 67 68 69 70 71 72
#> 0.151669341 0.068462840 0.112880428 0.068678027 0.124246473 0.184637680
#> 73 74 75 76 77 78
#> 0.325442016 0.174862073 0.090441588 0.089040153 0.108376599 0.057550307
#> 79 80 81 82 83 84
#> 0.188633743 0.150191651 0.082038635 0.027564795 0.181878087 0.172125872
#> 85 86 87 88 89 90
#> 0.142365056 0.114741553 0.035859182 0.096819023 0.132484179 0.229864932
#> 91 92 93 94 95 96
#> 0.120689668 0.047523899 0.070339929 0.055381362 0.123547581 0.253870138
#> 97 98 99 100 101 102
#> 0.042876315 0.089040153 0.035190905 0.106227011 0.091078334 0.091298269
#> 103 104 105 106 107 108
#> 0.017787711 0.028641480 0.194430169 0.039989624 0.075782969 0.044525715
#> 109 110 111 112 113 114
#> 0.071209628 0.254965259 0.163546509 0.185211877 0.241649528 0.139074790
#> 115 116 117 118 119 120
#> 0.076796420 0.262556790 0.348185429 0.211911041 0.146845572 0.149423594
#> 121 122 123 124 125 126
#> 0.150969692 0.156065943 0.042876315 0.142648758 0.129688202 0.004890619
#> 127 128 129 130 131 132
#> 0.113985419 0.031310085 0.248637733 0.121183075 0.041502912 0.067248608
#> 133 134 135 136 137 138
#> 0.115359144 0.027564795 0.112511267 0.200585657 0.069255092 0.201817172
#> 139 140 141 142 143 144
#> 0.094786456 0.075667327 0.240338975 0.094027169 0.216098624 0.024974398
#> 145 146 147 148 149 150
#> 0.066191299 0.084423319 0.167625233 0.058808327 0.221289168 0.105873833
#> 151 152 153 154 155 156
#> 0.140449741 0.098993713 0.063583542 0.067248608 0.230942129 NA
#> 157 158 159 160 161 162
#> 0.067558237 0.245408761 0.032338223 0.075589234 0.101745759 0.174851413
#> 163 164 165 166 167 168
#> 0.125897325 0.028641480 0.048065722 0.111659253 0.045260623 0.125085448
#> 169 170 171 172 173 174
#> 0.020095538 0.093808006 0.037378627 0.093118562 0.031761359 0.135544076
#> 175 176 177 178 179 180
#> 0.104263809 0.016586035 0.246130195 0.027564795 0.104263809 0.174088607
#> 181 182 183 184 185 186
#> 0.109727836 0.166211707 0.139230772 0.017941579 0.106388490 0.137198131
#> 187 188 189 190 191 192
#> 0.304795981 0.089505183 0.043311645 0.114439474 0.131445121 0.192173147
#> 193 194 195 196 197 198
#> 0.144436340 0.017746688 0.058484070 0.121193159 0.002956631 0.025613128
#> 199 200 201 202 203 204
#> 0.104623286 0.033429233 0.043311645 0.080773833 0.103942128 0.124008736
#> 205 206 207 208 209 210
#> 0.118294076 0.078206752 0.080505144 0.235804861 0.079727031 0.057789591
#> 211 212 213 214 215 216
#> 0.091221886 0.068678027 0.029421496 0.124248857 0.038549743 0.038549743
#> 217 218 219 220 221 222
#> 0.158976598 0.269332667 0.130275218 0.089792820 0.015369862 0.085131550
#> 223 224 225 226 227 228
#> 0.148494109 0.160862263 0.138362860 0.225740927 0.057778343 0.074788433
#>
predict(fit,type="terms",se.fit=TRUE)
#> $fit
#> age ph.ecog
#> 1 0.130878057 0.03032716
#> 2 0.063011653 -0.54083428
#> 3 -0.072721154 -0.54083428
#> 4 -0.061410086 0.03032716
#> 5 -0.027476885 -0.54083428
#> 6 0.130878057 0.03032716
#> 7 0.063011653 0.60148859
#> 8 0.096944855 0.60148859
#> 9 -0.106654355 0.03032716
#> 10 -0.016165817 0.60148859
#> 11 -0.061410086 0.03032716
#> 12 0.063011653 0.60148859
#> 13 0.063011653 0.03032716
#> 14 NA NA
#> 15 -0.061410086 0.03032716
#> 16 0.051700586 0.03032716
#> 17 0.085633788 0.03032716
#> 18 0.006456317 0.60148859
#> 19 -0.072721154 0.60148859
#> 20 -0.061410086 0.03032716
#> 21 0.051700586 0.03032716
#> 22 -0.151898625 -0.54083428
#> 23 -0.140587557 0.03032716
#> 24 -0.050099019 -0.54083428
#> 25 0.108255923 -0.54083428
#> 26 0.085633788 0.03032716
#> 27 -0.027476885 -0.54083428
#> 28 0.085633788 1.17265002
#> 29 -0.106654355 0.03032716
#> 30 0.130878057 0.60148859
#> 31 0.074322721 0.03032716
#> 32 0.119566990 0.60148859
#> 33 -0.163209692 0.60148859
#> 34 -0.027476885 0.60148859
#> 35 -0.016165817 0.60148859
#> 36 -0.004854750 0.60148859
#> 37 0.029078452 0.60148859
#> 38 0.040389519 0.03032716
#> 39 0.130878057 0.60148859
#> 40 0.017767384 0.03032716
#> 41 0.085633788 0.03032716
#> 42 0.119566990 0.60148859
#> 43 -0.038787952 -0.54083428
#> 44 -0.027476885 0.60148859
#> 45 0.063011653 0.03032716
#> 46 0.153500192 0.60148859
#> 47 0.130878057 -0.54083428
#> 48 0.006456317 0.03032716
#> 49 0.130878057 -0.54083428
#> 50 -0.140587557 0.03032716
#> 51 0.108255923 0.03032716
#> 52 0.006456317 -0.54083428
#> 53 0.063011653 -0.54083428
#> 54 -0.050099019 -0.54083428
#> 55 -0.038787952 0.03032716
#> 56 -0.004854750 -0.54083428
#> 57 0.029078452 -0.54083428
#> 58 -0.061410086 0.60148859
#> 59 -0.050099019 0.03032716
#> 60 0.017767384 0.03032716
#> 61 0.142189124 0.60148859
#> 62 -0.163209692 0.03032716
#> 63 0.119566990 0.03032716
#> 64 0.029078452 0.03032716
#> 65 0.074322721 0.03032716
#> 66 0.063011653 0.60148859
#> 67 0.051700586 0.60148859
#> 68 0.017767384 -0.54083428
#> 69 0.063011653 -0.54083428
#> 70 0.051700586 0.03032716
#> 71 0.006456317 -0.54083428
#> 72 -0.163209692 0.03032716
#> 73 0.130878057 0.60148859
#> 74 -0.253698230 0.03032716
#> 75 -0.106654355 0.03032716
#> 76 0.096944855 0.03032716
#> 77 -0.129276490 -0.54083428
#> 78 -0.072721154 0.03032716
#> 79 0.210055528 -0.54083428
#> 80 0.119566990 -0.54083428
#> 81 -0.038787952 -0.54083428
#> 82 -0.084032221 0.03032716
#> 83 -0.231076095 0.03032716
#> 84 -0.208453961 0.03032716
#> 85 -0.208453961 0.03032716
#> 86 0.096944855 0.03032716
#> 87 -0.004854750 0.03032716
#> 88 -0.016165817 -0.54083428
#> 89 -0.208453961 0.03032716
#> 90 0.108255923 0.60148859
#> 91 0.006456317 -0.54083428
#> 92 0.085633788 0.03032716
#> 93 0.040389519 0.03032716
#> 94 -0.061410086 0.03032716
#> 95 0.074322721 -0.54083428
#> 96 0.108255923 0.60148859
#> 97 0.074322721 0.03032716
#> 98 0.096944855 0.03032716
#> 99 0.017767384 0.03032716
#> 100 0.085633788 -0.54083428
#> 101 -0.050099019 -0.54083428
#> 102 0.074322721 0.03032716
#> 103 -0.072721154 0.03032716
#> 104 0.006456317 0.03032716
#> 105 -0.038787952 0.60148859
#> 106 0.040389519 0.03032716
#> 107 -0.095343288 0.03032716
#> 108 0.051700586 0.03032716
#> 109 -0.084032221 0.03032716
#> 110 0.142189124 0.60148859
#> 111 0.074322721 -0.54083428
#> 112 -0.208453961 0.03032716
#> 113 0.198744461 0.03032716
#> 114 0.142189124 -0.54083428
#> 115 -0.095343288 0.03032716
#> 116 0.153500192 0.60148859
#> 117 -0.151898625 0.60148859
#> 118 0.063011653 0.60148859
#> 119 0.040389519 0.60148859
#> 120 0.198744461 0.03032716
#> 121 0.142189124 -0.54083428
#> 122 -0.027476885 0.60148859
#> 123 0.074322721 0.03032716
#> 124 0.108255923 0.60148859
#> 125 0.085633788 -0.54083428
#> 126 0.040389519 0.03032716
#> 127 -0.140587557 0.03032716
#> 128 0.017767384 0.03032716
#> 129 0.164811259 0.60148859
#> 130 -0.163209692 -0.54083428
#> 131 -0.038787952 0.03032716
#> 132 -0.106654355 0.03032716
#> 133 -0.174520759 -0.54083428
#> 134 -0.084032221 0.03032716
#> 135 0.051700586 -0.54083428
#> 136 0.130878057 0.60148859
#> 137 -0.050099019 0.03032716
#> 138 -0.072721154 0.60148859
#> 139 -0.095343288 0.03032716
#> 140 -0.072721154 -0.54083428
#> 141 0.119566990 0.60148859
#> 142 0.130878057 0.03032716
#> 143 0.153500192 0.60148859
#> 144 0.029078452 0.03032716
#> 145 -0.061410086 0.03032716
#> 146 -0.106654355 0.03032716
#> 147 0.096944855 -0.54083428
#> 148 -0.095343288 0.03032716
#> 149 0.221366595 -0.54083428
#> 150 -0.038787952 -0.54083428
#> 151 0.085633788 0.03032716
#> 152 -0.027476885 -0.54083428
#> 153 -0.004854750 -0.54083428
#> 154 -0.106654355 0.03032716
#> 155 -0.084032221 0.60148859
#> 156 NA NA
#> 157 0.063011653 0.03032716
#> 158 -0.004854750 0.60148859
#> 159 0.006456317 0.03032716
#> 160 -0.072721154 0.03032716
#> 161 -0.004854750 -0.54083428
#> 162 -0.208453961 0.03032716
#> 163 0.074322721 0.60148859
#> 164 0.006456317 0.03032716
#> 165 0.017767384 0.03032716
#> 166 -0.061410086 -0.54083428
#> 167 -0.027476885 0.03032716
#> 168 -0.185831826 -0.54083428
#> 169 -0.016165817 0.03032716
#> 170 0.029078452 -0.54083428
#> 171 -0.016165817 0.03032716
#> 172 -0.050099019 -0.54083428
#> 173 -0.072721154 0.03032716
#> 174 -0.219765028 -0.54083428
#> 175 -0.106654355 0.03032716
#> 176 -0.038787952 0.03032716
#> 177 -0.072721154 0.60148859
#> 178 -0.084032221 0.03032716
#> 179 -0.106654355 0.03032716
#> 180 0.130878057 -0.54083428
#> 181 -0.027476885 -0.54083428
#> 182 -0.265009297 -0.54083428
#> 183 0.040389519 -0.54083428
#> 184 0.029078452 0.03032716
#> 185 -0.129276490 -0.54083428
#> 186 -0.197142894 -0.54083428
#> 187 0.108255923 0.60148859
#> 188 -0.050099019 -0.54083428
#> 189 0.017767384 0.03032716
#> 190 -0.106654355 -0.54083428
#> 191 0.108255923 0.03032716
#> 192 -0.117965423 0.60148859
#> 193 -0.140587557 0.03032716
#> 194 0.017767384 0.03032716
#> 195 0.096944855 0.03032716
#> 196 0.085633788 -0.54083428
#> 197 0.006456317 0.03032716
#> 198 0.017767384 0.03032716
#> 199 -0.117965423 -0.54083428
#> 200 -0.027476885 0.03032716
#> 201 0.017767384 0.03032716
#> 202 0.119566990 0.03032716
#> 203 0.006456317 -0.54083428
#> 204 -0.140587557 -0.54083428
#> 205 0.006456317 -0.54083428
#> 206 -0.004854750 0.60148859
#> 207 -0.084032221 -0.54083428
#> 208 -0.140587557 0.60148859
#> 209 0.074322721 0.03032716
#> 210 -0.038787952 0.03032716
#> 211 -0.027476885 -0.54083428
#> 212 0.051700586 0.03032716
#> 213 0.074322721 0.03032716
#> 214 0.017767384 0.60148859
#> 215 0.029078452 0.03032716
#> 216 0.029078452 0.03032716
#> 217 -0.242387163 0.03032716
#> 218 0.153500192 0.60148859
#> 219 0.085633788 0.60148859
#> 220 -0.061410086 -0.54083428
#> 221 0.051700586 0.03032716
#> 222 0.096944855 0.03032716
#> 223 0.153500192 0.03032716
#> 224 0.164811259 0.03032716
#> 225 -0.265009297 -0.54083428
#> 226 0.142189124 0.60148859
#> 227 0.040389519 0.03032716
#> 228 -0.050099019 0.03032716
#>
#> $se.fit
#> age ph.ecog
#> 1 0.119930635 0.007395102
#> 2 0.057740983 0.131879319
#> 3 0.066638322 0.131879319
#> 4 0.056273380 0.007395102
#> 5 0.025178554 0.131879319
#> 6 0.119930635 0.007395102
#> 7 0.057740983 0.146669523
#> 8 0.088835809 0.146669523
#> 9 0.097733148 0.007395102
#> 10 0.014813612 0.146669523
#> 11 0.056273380 0.007395102
#> 12 0.057740983 0.146669523
#> 13 0.057740983 0.007395102
#> 14 NA NA
#> 15 0.056273380 0.007395102
#> 16 0.047376041 0.007395102
#> 17 0.078470867 0.007395102
#> 18 0.005916272 0.146669523
#> 19 0.066638322 0.146669523
#> 20 0.056273380 0.007395102
#> 21 0.047376041 0.007395102
#> 22 0.139192917 0.131879319
#> 23 0.128827975 0.007395102
#> 24 0.045908438 0.131879319
#> 25 0.099200751 0.131879319
#> 26 0.078470867 0.007395102
#> 27 0.025178554 0.131879319
#> 28 0.078470867 0.285943945
#> 29 0.097733148 0.007395102
#> 30 0.119930635 0.146669523
#> 31 0.068105925 0.007395102
#> 32 0.109565693 0.146669523
#> 33 0.149557859 0.146669523
#> 34 0.025178554 0.146669523
#> 35 0.014813612 0.146669523
#> 36 0.004448670 0.146669523
#> 37 0.026646156 0.146669523
#> 38 0.037011098 0.007395102
#> 39 0.119930635 0.146669523
#> 40 0.016281214 0.007395102
#> 41 0.078470867 0.007395102
#> 42 0.109565693 0.146669523
#> 43 0.035543496 0.131879319
#> 44 0.025178554 0.146669523
#> 45 0.057740983 0.007395102
#> 46 0.140660519 0.146669523
#> 47 0.119930635 0.131879319
#> 48 0.005916272 0.007395102
#> 49 0.119930635 0.131879319
#> 50 0.128827975 0.007395102
#> 51 0.099200751 0.007395102
#> 52 0.005916272 0.131879319
#> 53 0.057740983 0.131879319
#> 54 0.045908438 0.131879319
#> 55 0.035543496 0.007395102
#> 56 0.004448670 0.131879319
#> 57 0.026646156 0.131879319
#> 58 0.056273380 0.146669523
#> 59 0.045908438 0.007395102
#> 60 0.016281214 0.007395102
#> 61 0.130295577 0.146669523
#> 62 0.149557859 0.007395102
#> 63 0.109565693 0.007395102
#> 64 0.026646156 0.007395102
#> 65 0.068105925 0.007395102
#> 66 0.057740983 0.146669523
#> 67 0.047376041 0.146669523
#> 68 0.016281214 0.131879319
#> 69 0.057740983 0.131879319
#> 70 0.047376041 0.007395102
#> 71 0.005916272 0.131879319
#> 72 0.149557859 0.007395102
#> 73 0.119930635 0.146669523
#> 74 0.232477395 0.007395102
#> 75 0.097733148 0.007395102
#> 76 0.088835809 0.007395102
#> 77 0.118463033 0.131879319
#> 78 0.066638322 0.007395102
#> 79 0.192485229 0.131879319
#> 80 0.109565693 0.131879319
#> 81 0.035543496 0.131879319
#> 82 0.077003264 0.007395102
#> 83 0.211747511 0.007395102
#> 84 0.191017627 0.007395102
#> 85 0.191017627 0.007395102
#> 86 0.088835809 0.007395102
#> 87 0.004448670 0.007395102
#> 88 0.014813612 0.131879319
#> 89 0.191017627 0.007395102
#> 90 0.099200751 0.146669523
#> 91 0.005916272 0.131879319
#> 92 0.078470867 0.007395102
#> 93 0.037011098 0.007395102
#> 94 0.056273380 0.007395102
#> 95 0.068105925 0.131879319
#> 96 0.099200751 0.146669523
#> 97 0.068105925 0.007395102
#> 98 0.088835809 0.007395102
#> 99 0.016281214 0.007395102
#> 100 0.078470867 0.131879319
#> 101 0.045908438 0.131879319
#> 102 0.068105925 0.007395102
#> 103 0.066638322 0.007395102
#> 104 0.005916272 0.007395102
#> 105 0.035543496 0.146669523
#> 106 0.037011098 0.007395102
#> 107 0.087368206 0.007395102
#> 108 0.047376041 0.007395102
#> 109 0.077003264 0.007395102
#> 110 0.130295577 0.146669523
#> 111 0.068105925 0.131879319
#> 112 0.191017627 0.007395102
#> 113 0.182120287 0.007395102
#> 114 0.130295577 0.131879319
#> 115 0.087368206 0.007395102
#> 116 0.140660519 0.146669523
#> 117 0.139192917 0.146669523
#> 118 0.057740983 0.146669523
#> 119 0.037011098 0.146669523
#> 120 0.182120287 0.007395102
#> 121 0.130295577 0.131879319
#> 122 0.025178554 0.146669523
#> 123 0.068105925 0.007395102
#> 124 0.099200751 0.146669523
#> 125 0.078470867 0.131879319
#> 126 0.037011098 0.007395102
#> 127 0.128827975 0.007395102
#> 128 0.016281214 0.007395102
#> 129 0.151025461 0.146669523
#> 130 0.149557859 0.131879319
#> 131 0.035543496 0.007395102
#> 132 0.097733148 0.007395102
#> 133 0.159922801 0.131879319
#> 134 0.077003264 0.007395102
#> 135 0.047376041 0.131879319
#> 136 0.119930635 0.146669523
#> 137 0.045908438 0.007395102
#> 138 0.066638322 0.146669523
#> 139 0.087368206 0.007395102
#> 140 0.066638322 0.131879319
#> 141 0.109565693 0.146669523
#> 142 0.119930635 0.007395102
#> 143 0.140660519 0.146669523
#> 144 0.026646156 0.007395102
#> 145 0.056273380 0.007395102
#> 146 0.097733148 0.007395102
#> 147 0.088835809 0.131879319
#> 148 0.087368206 0.007395102
#> 149 0.202850171 0.131879319
#> 150 0.035543496 0.131879319
#> 151 0.078470867 0.007395102
#> 152 0.025178554 0.131879319
#> 153 0.004448670 0.131879319
#> 154 0.097733148 0.007395102
#> 155 0.077003264 0.146669523
#> 156 NA NA
#> 157 0.057740983 0.007395102
#> 158 0.004448670 0.146669523
#> 159 0.005916272 0.007395102
#> 160 0.066638322 0.007395102
#> 161 0.004448670 0.131879319
#> 162 0.191017627 0.007395102
#> 163 0.068105925 0.146669523
#> 164 0.005916272 0.007395102
#> 165 0.016281214 0.007395102
#> 166 0.056273380 0.131879319
#> 167 0.025178554 0.007395102
#> 168 0.170287743 0.131879319
#> 169 0.014813612 0.007395102
#> 170 0.026646156 0.131879319
#> 171 0.014813612 0.007395102
#> 172 0.045908438 0.131879319
#> 173 0.066638322 0.007395102
#> 174 0.201382569 0.131879319
#> 175 0.097733148 0.007395102
#> 176 0.035543496 0.007395102
#> 177 0.066638322 0.146669523
#> 178 0.077003264 0.007395102
#> 179 0.097733148 0.007395102
#> 180 0.119930635 0.131879319
#> 181 0.025178554 0.131879319
#> 182 0.242842337 0.131879319
#> 183 0.037011098 0.131879319
#> 184 0.026646156 0.007395102
#> 185 0.118463033 0.131879319
#> 186 0.180652685 0.131879319
#> 187 0.099200751 0.146669523
#> 188 0.045908438 0.131879319
#> 189 0.016281214 0.007395102
#> 190 0.097733148 0.131879319
#> 191 0.099200751 0.007395102
#> 192 0.108098090 0.146669523
#> 193 0.128827975 0.007395102
#> 194 0.016281214 0.007395102
#> 195 0.088835809 0.007395102
#> 196 0.078470867 0.131879319
#> 197 0.005916272 0.007395102
#> 198 0.016281214 0.007395102
#> 199 0.108098090 0.131879319
#> 200 0.025178554 0.007395102
#> 201 0.016281214 0.007395102
#> 202 0.109565693 0.007395102
#> 203 0.005916272 0.131879319
#> 204 0.128827975 0.131879319
#> 205 0.005916272 0.131879319
#> 206 0.004448670 0.146669523
#> 207 0.077003264 0.131879319
#> 208 0.128827975 0.146669523
#> 209 0.068105925 0.007395102
#> 210 0.035543496 0.007395102
#> 211 0.025178554 0.131879319
#> 212 0.047376041 0.007395102
#> 213 0.068105925 0.007395102
#> 214 0.016281214 0.146669523
#> 215 0.026646156 0.007395102
#> 216 0.026646156 0.007395102
#> 217 0.222112453 0.007395102
#> 218 0.140660519 0.146669523
#> 219 0.078470867 0.146669523
#> 220 0.056273380 0.131879319
#> 221 0.047376041 0.007395102
#> 222 0.088835809 0.007395102
#> 223 0.140660519 0.007395102
#> 224 0.151025461 0.007395102
#> 225 0.242842337 0.131879319
#> 226 0.130295577 0.146669523
#> 227 0.037011098 0.007395102
#> 228 0.045908438 0.007395102
#>
# For someone who demands reference='zero'
pzero <- function(fit)
predict(fit, reference="sample") + sum(coef(fit) * fit$means, na.rm=TRUE)