Values of type factor, character and logical are
treated as categorical. For logicals, the two categories are given the
labels `Yes` for TRUE, and `No` for FALSE. Factor levels with
zero counts are retained.
stats.default(x, quantile.type = 7, ...)A vector or numeric, factor, character or logical values.
An integer from 1 to 9, passed as the type
argument to function quantile.
Further arguments (ignored).
A list. For numeric x, the list contains the numeric elements:
N: the number of non-missing values
NMISS: the number of missing values
SUM: the sum of the non-missing values
MEAN: the mean of the non-missing values
SD: the standard deviation of the non-missing values
MIN: the minimum of the non-missing values
MEDIAN: the median of the non-missing values
CV: the percent coefficient of variation of the non-missing values
GMEAN: the geometric mean of the non-missing values if non-negative, or NA
GSD: the geometric standard deviation of the non-missing values if non-negative, or NA
GCV: the percent geometric coefficient of variation of the
non-missing values if non-negative, or NA
qXX: various quantiles (percentiles) of the non-missing
values (q01: 1%, q02.5: 2.5%, q05: 5%, q10: 10%, q25: 25% (first
quartile), q33.3: 33.33333% (first tertile), q50: 50% (median, or second
quartile), q66.7: 66.66667% (second tertile), q75: 75% (third quartile),
q90: 90%, q95: 95%, q97.5: 97.5%, q99: 99%)
Q1: the first quartile of the non-missing values (alias q25)
Q2: the second quartile of the non-missing values (alias q50 or Median)
Q3: the third quartile of the non-missing values (alias q75)
IQR: the inter-quartile range of the non-missing values (i.e., Q3 - Q1)
T1: the first tertile of the non-missing values (alias q33.3)
T2: the second tertile of the non-missing values (alias q66.7)
If x is categorical (i.e. factor, character or logical), the list
contains a sublist for each category, where each sublist contains the
numeric elements:
FREQ: the frequency count
PCT: the percent relative frequency, including NA in the denominator
PCTnoNA: the percent relative frequency, excluding NA from the denominator
NMISS: the number of missing values
x <- exp(rnorm(100, 1, 1))
stats.default(x)
#> $N
#> [1] 100
#>
#> $NMISS
#> [1] 0
#>
#> $SUM
#> [1] 340.8459
#>
#> $MEAN
#> [1] 3.408459
#>
#> $SD
#> [1] 4.073481
#>
#> $CV
#> [1] 119.5109
#>
#> $GMEAN
#> [1] 2.128828
#>
#> $GSD
#> [1] 2.630025
#>
#> $GCV
#> [1] 124.3948
#>
#> $MEDIAN
#> 0.5
#> 2.310684
#>
#> $MIN
#> [1] 0.306127
#>
#> $MAX
#> [1] 27.14736
#>
#> $q01
#> 0.01
#> 0.3147366
#>
#> $q02.5
#> 0.025
#> 0.3705747
#>
#> $q05
#> 0.05
#> 0.4809816
#>
#> $q10
#> 0.1
#> 0.6293231
#>
#> $q25
#> 0.25
#> 0.9246764
#>
#> $q50
#> 0.5
#> 2.310684
#>
#> $q75
#> 0.75
#> 4.010674
#>
#> $q90
#> 0.9
#> 7.113366
#>
#> $q95
#> 0.95
#> 9.728987
#>
#> $q97.5
#> 0.975
#> 14.94395
#>
#> $q99
#> 0.99
#> 20.24373
#>
#> $Q1
#> 0.25
#> 0.9246764
#>
#> $Q2
#> 0.5
#> 2.310684
#>
#> $Q3
#> 0.75
#> 4.010674
#>
#> $IQR
#> 0.75
#> 3.085998
#>
#> $T1
#> 1/3
#> 1.500533
#>
#> $T2
#> 2/3
#> 3.41731
#>
y <- factor(sample(0:1, 99, replace=TRUE), labels=c("Female", "Male"))
y[1:10] <- NA
stats.default(y)
#> $Female
#> $Female$FREQ
#> [1] 40
#>
#> $Female$PCT
#> [1] 40.40404
#>
#> $Female$PCTnoNA
#> [1] 44.94382
#>
#>
#> $Male
#> $Male$FREQ
#> [1] 49
#>
#> $Male$PCT
#> [1] 49.49495
#>
#> $Male$PCTnoNA
#> [1] 55.05618
#>
#>
stats.default(is.na(y))
#> $Yes
#> $Yes$FREQ
#> [1] 10
#>
#> $Yes$PCT
#> [1] 10.10101
#>
#> $Yes$PCTnoNA
#> [1] 10.10101
#>
#>
#> $No
#> $No$FREQ
#> [1] 89
#>
#> $No$PCT
#> [1] 89.89899
#>
#> $No$PCTnoNA
#> [1] 89.89899
#>
#>