Tables in R Markdown

Duncan Murdoch

13/05/2019

Contents
1 Introduction 2
2 Reference 3
2.1 Function syntax . . . . . . . . . L e e e 4
2.1.1 tabular() . . . . . . . e 4
2.1.2 format(), print(), toLatex() . . . . . . . . . .. ... 4
2.1.3 as.matrix(), write.csv.tabular(), write.table.tabular() ... .. ... ... 5
2.1.4 as.tabular() . . . . . . . e 5
2.1.5 table_options(), booktabs() . . . .. ... . ... ... 5
2.1.6 latexNumeric() . . . . . . . . . . . e e 8
2.2 0perators . . . . . . . e e e e e 8
2.2.1 L2 T 2> 8
2.2.2 L2 T 2 9
2.2.3 [ T 2 T 9
2.2.4 [ T 2 9
2.3 Terms in Formulas . . . . . . . . . . . . e 10
2.3.1 Closures or other functions . . . . . . . . . . . . . .. 10
2.3.2 Factors . . . . . . e e 10
2.3.3 Logical vectors . . . . . . .. 10
2.3.4 Language Expressions . . . . . . . . . L e 11
2.3.5 Other vectors . . . . . . . . . . e e e e 11
2.4 “Pseudo-functions” . . . . . . . . .. e e 11
2.4.1 Format() . . . . . . e e e e 11
2.4.2 Format() . . . . . . . . 12
2.4.3 Heading() . . . . . . . . 13
244 Justify() . ... e 13
2.4.5 Percent() . . . . . . e e 14
24.6 Arguments() . . . . ... 15
2.4.7 DropEmpty () . . . . . .. e e 16
2.5 Formula Functions . . . . . . . . . . . 17
2.5. 1 AILIQ) . . e 17
2.5.2 Al110bs(), RowNum() . . . . . . . . . e 17
2.5.3 Hline() . . . . . . e e 19
2.5.4 Literal() . . . . . . . e 19
2.5.5 PlusMinus() . . . . . . . . e 19
2.5.6 Paste() . . . . . . e 20
2.5.7 Factor(), RowFactor() and Multicolumn() . . .. .. ... .. .. ... ....... 21
3 Further Details 25
3.1 Formatting . . . . . . . e 25



3.2 Missing Values . . . . . . . e 26
3.3 Subsetting and Joining Tables . . . . . . . . ... Lo 27
3.4 knitr, rmarkdown and kableExtra support . . . . . . . .. ... 29
3.5 Captions, labels, etc. . . . . . . . L 29
4 Acknowledgments 30
References 30

1 Introduction

This vignette was built using tables version 0.9.31. It is intended to show the same content as the tables.pdf
vignette that was written in Sweave, but with R Markdown source code. This has allowed a few simplifications;
see Section 3.4 for a description of them.

It is a short introduction to the tables package. Inspired by my 20 year old memories of SAS PROC
TABULATE, I decided to write a simple utility to create nice looking tables in Sweave documents. (It now
also works in R Markdown documents, as this vignette illustrates.) For example, we might display summaries
of some of Fisher’s iris data using the code

tabular

( (Species + 1) ~ (n=1) + Format(digits=2)x*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

##

## Sepal.Length Sepal.Width

## Species n  mean sd mean sd
## setosa 50 5.01 0.35 3.43 0.38
## versicolor 50 5.94 0.52 2.77 0.31
## virginica 50 6.59 0.64 2.97 0.32
## All 150 5.84 0.83 3.06 0.44

You can also pass the output through the toLatex () function to produce ITEX output, which when processed
by pdflatex will produce the following table:

Species

Sepal.Length  Sepal. Width
n  mean sd mean  sd

setosa

50  5.01 035 343 0.38

versicolor 50 5.94 0.52 2.77  0.31
virginica 50  6.59 0.64 2.97 0.32

All

150 5.84 083 3.06 0.44

However, if you are using rmarkdown or knitr (as this document does), toLatex () is not necessary. Just

execute

table_options(knit_print = TRUE)

at the start of your document, and conversion to ITEX will be done automatically when needed.

If you prefer the style of table that the KTEX booktabs package (Fear 2005) produces, you can choose that
style instead. I mostly like it, so I have used

booktabs ()

for the rest of this document. This gives



Sepal.Length  Sepal.Width
Species n  mean sd mean  sd

setosa, 50 5.01 035 3.43 0.38
versicolor 50 594 052 277 0.31
virginica 50 6.59 064 297 0.32
All 150 5.84 0.83 3.06 0.44

FALSE
Details on booktabs () are given in section 2.1.5 below.

There is also the toHTML function and html.tabular method for the Hmisc: :html() generic; they produce
output in HTML format. Finally, see section 2.1.3 for other output formats.

The idea of a table in the tables package is a rectangular array of values, with each row and column labelled,
and possibly with groups of rows and groups of columns also labelled. These arrays are specified by “table
formulas”.

Table formulas are R formula objects, with the rows of the table described before the tilde ("~"), and the
columns after. Fach of those is an expression containing "*" "+" "="_as well as functions, function calls and
variables, and parentheses for grouping. There are also various directives included in the formula, entered as
“pseudo-functions”, i.e. expressions that look like function calls but which are interpreted by the tabular ()
function.

For example, in the formula

(Species + 1) ~ (n=1) + Format(digits=2)x
(Sepal.Length + Sepal.Width)*(mean + sd)

the rows are given by (Species + 1). The summation here is interpreted as concatenation, i.e. this says
rows for Species should be followed by rows for 1.

In the iris dataframe, Species is a factor, so the rows for it correspond to its levels.
The 1 is a place-holder, which in this context will mean “all groups”.

The columns in the table are defined by
(n=1) + Format(digits=2)#*(Sepal.Length + Sepal.Width)*(mean + sd)

Again, summation corresponds to concatenation, so the first column corresponds to (n=1). This is another
use of the placeholder, but this time it is labelled as n. Since we haven’t specified any other statistic to use,
the first column contains the counts of values in the dataframe in each category.

The second term in the column formula is a product of three factors. The first, Format (digits=2), is a
pseudo-function to set the format for all of the entries to come. (For more on formats, see section 2.4.1
below.) The second factor, (Sepal.Length + Sepal.Width), is a concatenation of two variables. Both of
these variables are numeric vectors in iris, and they each become the variable to be analyzed, in turn. The
last factor, (mean + sd) names two R functions. These are assumed to be functions that operate on a vector
and produce a single value, as mean and sd do. The values in the table will be the results of applying those
functions to the two different variables and the subsets of the dataset.

2 Reference

For the examples below we use the following definitions:
set.seed(100)

X <- rnorm(10)
X



## [1] -0.50219235 0.13153117 -0.07891709 0.88678481
## [5] 0.11697127 0.31863009 -0.58179068 0.71453271
## [9] -0.82525943 -0.35986213

A <- sample(letters[1:2], 10, replace = TRUE)
A

## [1] Ilall llbll llbll lla" llbll Ilall Ilall llbll llbll llall

F <- factor(A)
F

## [1] abbabaabba
## Levels: a b

2.1 Function syntax
2.1.1 tabular()

tabular (table, ...)
tabular.default(table, ...)
tabular.formula(table, data=parent.frame(), n, suppressLabels=0, ...)

The tabular function is a generic function. The default method uses as.formula() to try to convert the
table argument to a formula, then passes it and all the other arguments to tabular.formula() method,
which does most of the work. That method has 4 arguments plus ..., but usually only the first two are used,
and a warning is issued if anything is passed in the ... arguments.

e table: The table argument is the table formula, described in detail below.

e data: The data argument is a dataframe or environment in which to look for the data referenced by
the table.

e n: The tabular function needs to know the length of vectors on which it operates, because some
formulas (e.g. 1 ~ 1) contain no data. Normally n is taken as the number of rows in data, or the
length of the first referenced object in the formula, but sometimes the user will need to specify it. Once
specified, it can’t be modified: all data in the table should be the same length.

e suppressLabels: By default, tabular adds a row or column label for each term, but this does
sometimes make the table messy. Setting suppressLabels to a positive integer will cause that many
labels to be suppressed at the start of each term. The pseudo-function Heading() can achieve the same
effect, one term at a time.

The value returned is a list-mode matrix corresponding to the entries in the table, with a number of attributes
to help with formatting. See the ?tabular help page for more details.

2.1.2 format(), print(), toLatex()

format(x, digits=4, justification="n", ...)
print(x, ...)
toLatex(x, file="", options=NULL, ...)

The tables package provides methods for the format (), print() and utils::tolLatex() generics. The
arguments are:

e x: The tabular object returned from tabular().
e digits: The default number of digits to use when formatting.



e justification: The default text justification to use when printing. For text display, the recognized
values are "n", "1", "c", "r" standing for none, left, center and right justification respectively. For

KTEX the justification is specified via the table_options() function (section 2.1.5).

e file: The default method for the Hmisc::latex() generic writes the KTEX code to a file;
latex.tabular() can optionally do the same, but it defaults to writing to screen, for use in Sweave

documents like this one.

e options: A list of options to pass to table_options(). These will be set only for the duration of the

call to toLatex().

2.1.3 as.matrix(), write.csv.tabular(), write.table.tabular()

as.matrix(x, format = TRUE,
rowLabels = TRUE, colLabels = TRUE, justification = "n", ...)

write.csv.tabular(x, file = "", justification = "n", row.names=FALSE,
write.options=list(), ...)

write.table.tabular(x, file="",
justification = "n", row.names=FALSE, col.names=FALSE,
write.options=list(), ...)

These functions export tables for further computations. The arguments are:

e x: The tabular object.

e format: Whether to format the entries. See the help page for alternatives.

e rowLabels, colLabels: If formatting, whether to include the labels or not.

o justification: The default text justification to use when formatting.

e file: Where to write the output.

e row.names,col.names, write.options: Additional parameters to pass to write.csv()
write.table().

2.1.4 as.tabular()

as.tabular(x, ...)
as.tabular.default(x, like=NULL, ...)
as.tabular.data.frame(x, ...)

or

These functions create tables from existing matrices or dataframes of values. The dimnames of the input are
used to construct default row and column names. If more elaborate labelling is wanted, use a tabular object

as the like argument. The labelling for 1ike will be used on the newly constructed result.

2.1.5 table_options(), booktabs()

The table_options() function sets a number of formatting defaults for the toLatex () method:

e justification: This is the default justification for data columns and their headers. Any justification
string will be accepted; it should be one that the BTEX \tabular environment (or substitute) accepts.
If a vector of strings is specified they will be recycled across the columns of the table.

e rowlabeljustification: This is the default justification for row labels. A vector of strings will be
recycled across the row label columns.

e tabular: The environment to use in ITEX. Alternatives to "tabular" such as "longtable" can be
used here. Those often also need modifications within the table; the Literal () (section \ref{sec:Literal*)
function may be helpful.

e toprule, midrule, bottomrule: The IXTEX macros to draw the top, middle and bottom lines in the
table. By default these are all "\\hline".

e titlerule: An optional IHTEX macro to draw a line under multicolumn titles.

e doBegin, doHeader, doBody, doFooter, doEnd: These logical values control the inclusion of specific
parts of the output table.



The defaults are

## $justification
## [1] "c"

##

## $rowlabeljustification
## [1] "1

##

## $tabular

## [1] "tabular"
##

## $toprule

## [1] "\\hline"
#i#

## $midrule

## [1] "\\hline"
##

## $bottomrule
## [1]1 "\\hline"
##

## $titlerule
## NULL

##

## $doBegin

## [1] TRUE

##

## $doHeader

## [1] TRUE

##

## $doBody

## [1] TRUE

##

## $doFooter

## [1] TRUE

##

## $doEnd

## [1] TRUE

##

## $knit_print
## [1] TRUE

##

## $latexleftpad
## [1] TRUE

##

## $latexrightpad
## [1] TRUE

##

## $latexminus
## [1] TRUE

##

## $doHTMLheader
## [1] FALSE

##

## $doCSS



## [1] FALSE

##

## $doHTMLbody

## [1] FALSE

##

## $CSS

## [1] "<style>\n#ID .Rtable thead, .Rtable .even {\n background-color: inherit;\n}\n#ID .left { tex
##

## $HTMLhead

## [1] "<!DOCTYPE html>\n<html>\n<head>\n<meta charset=\"CHARSET\">\n"
##

## $HTMLbody

## [1] "<body>\n"
##

## $HTMLattributes
## [1] "class=\"Rtable\""
##

## $HTMLcaption

## NULL

##

## $HTMLfooter

## NULL

##

## $HTMLleftpad

## [1] FALSE

##

## $HTMLrightpad
## [1] FALSE

##

## $HTMLminus

## [1] FALSE

Some options only apply to HTML output; see the help page ?table_options for details.

If you are using the I¥TEX booktabs package, the booktabs() function will set different options. Currently
those are:

## $toprule

## [1] "\\toprule"

##

## $midrule

## [1] "\\midrule"

##

## $bottomrule

## [1] "\\bottomrule"
##

## $titlerule

## [1] "\\cmidrule(1r)"

The earlier table of iris data was produced using

saved.options <- table_options()

invisible (booktabs())

tabular( (Species + 1) ~ (n=1) + Format(digits=2)=*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

We can use the doXXXX options to insert raw IXTEX into a table:



toLatex(tabular(Species ~ (n=1) + Format(digits=2)x*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris),
options=list(doFooter=FALSE, doEnd=FALSE))
cat ("\\ \\\\ \\multicolumn{6}{1}{
\\textit{Overall, we see the following: }} \\\\
A\ AN
toLatex(tabular(l ~ (n=1) + Format(digits=2)x*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris),
options=1list(doBegin=FALSE, doHeader=FALSE))

Sepal.Length  Sepal.Width

Species n  mean sd mean  sd

setosa 50 5.01 0.35 3.43 0.38
versicolor 50 5.94 0.52 277 0.31
virginica 50 6.59 0.64 297 0.32

Owverall, we see the following:

All 150 5.84 0.83 3.06 0.44

Note that we need explicit toLatex() calls to access these options; in turn, that means the knitr chunk
options require results = "asis".

2.1.6 latexNumeric()

latexNumeric(chars, minus = TRUE, leftpad = TRUE, rightpad=TRUE,
mathmode = TRUE)

The latexNumeric () function converts character representations of numbers into a format suitable for display
in IMTEX documents. There are two goals:

e If chars is a vector with constant width, then the output will also be constant width. This means the
default centering used in tabular () will not misalign decimal points (if they were aligned in chars).
e Minus signs will be displayed with the proper symbol rather than a hyphen.

The arguments are:
e chars: A character vector of formatted numeric values.

e minus: Whether to pad positive cases with spacing of the same width as a minus sign. If TRUE and
some entries are negative, then all positive entries will be padded.

o leftpad, rightpad: Whether to pad cases that have leading or trailing blanks with spacing matching
a digit width per space. If leftpad=TRUE, leading blanks will be converted to spaces the same width
as a digit 0. (If minus=TRUE, one leading blank may have been consumed in the sign padding.) The
rightpad argument handles trailing blanks similarly.

e mathmode: Whether to wrap the result in dollar signs, so IXTEX will render minus signs properly.

2.2 Operators
2.2.1 e +ey

Summing two expressions indicates that they should be displayed in sequence. For rows, this means e; will
be displayed just above es; for columns, e; will be just to the left of es.

Example:



tabular(F + 1 ~ 1)

F All
a 5
b 5
All 10
FALSE

2.2.2 €1 * €9

Multiplying two expressions means that each element of e; will be applied to each element of e;. If e is a
factor, then ey will be displayed for each element of it. NB: % has higher precedence than + and evaluation
proceeds from left to right. The expression (e1 +e3) * (e3+e4) is equivalent to e; xe3+e1 *xeq+ea*xez+egxey.
Example:

tabular( X*F*(mean + sd) ~ 1 )

F All
X a mean —0.04769
sd 0.63181
b  mean 0.01177
sd 0.55410
FALSE

2.2.3 €1 ~ €2

The tilde separates row specifications from column specifications, but otherwise acts the same as *, i.e. each
row value applies to each column.

Example:

tabular( X*F ~ mean + sd )

F mean sd

X a —0.04769 0.6318
b 0.01177 0.5541

FALSE

2.2.4 €1 = €9

The operator = is used to set the name of e; to a displayed version of e;. It is an abbreviation for
Heading(e;)*ey. NB: because = has lower operator precedence than any other operator, we usually put
parentheses around these expressions, i.e. (e; = e3).

Example: F is renamed to Newname.

tabular ( X*(Newname=F) ~ mean + sd )

Newname mean sd
X a —0.04769 0.6318
b 0.01177 0.5541
FALSE



2.3 Terms in Formulas

R parses table formulas into sums, products, and bindings separated by the tilde formula operator. What
comes between the operators are other expressions. Other than the pseudo-functions described in section 2.4,
these are evaluated and the actions depend on the type of the resulting value.

2.3.1 Closures or other functions

If the expression evaluates to a function (e.g. it is the name of a function), then that function becomes the
summary statistic to be displayed. The summary statistic should take a vector of values as input, and return
a single value (either numeric, character, or some other simple printable value). If no summary function is
specified, the default is length, to count the length of the vector being passed.

Note that only one summary function can be specified for any cell in the table or an error will be reported.

Example: mean and sd are specified functions; n is the renamed default statistic.

tabular( (F+1) ~ (n=1) + X*(mean + sd) )

X

F n mean sd

a 5 —0.04769 0.6318
b ) 0.01177 0.5541
All 10 —0.01796 0.5611

FALSE

2.3.2 Factors

If the expression evaluates to a factor, the dataset is broken up into subgroups according to the levels of the
factor. Most of the examples above have shown this for the factor F, but this can also be used to display
complete datasets:

Example: creating a factor to show all data. Use the identity function to display the values in each cell.
tabular( (i = factor(seq_along(X))) -~
Heading()*identity* (X+A +
(F = as.character(F) ) ) )

i X A F
1 —0.50219 a a
2 0.13153 b b
3 —0.07892 b b
4 0.88678 a a
) 0.11697 b b
6 0.31863 a a
7 —0.58179 a a
8 0.71453 b b
9 —0.82526 b b
10 —0.35986 a a
FALSE

2.3.3 Logical vectors
If the expression evaluates to a logical vector, it is used to subset the data.

Example: creating subsets on the fly.

10



tabular( (X > 0) + X <0) + 1
~ ((n =1) + X*(mean + sd)) )

X

n mean sd

X>0 5 0.43369 0.3496
X<0 5 -0.46960 0.2761
All 10 —0.01796 0.5611

FALSE

2.3.4 Language Expressions

If the expression evaluates to a language object, e.g. the result of quote() or substitute(), then it will be
replaced in the table formula by its result. This allows complicated table formulas to be saved and re-used.
For examples, see section 2.5.

2.3.5 Other vectors

If the expression evaluates to something other than the above, then it is assumed to be a vector of values
to be summarized in the table. If you would like to summarize a factor or logical vector, wrap it in I() to
prevent special handling.

Note that the following must all be true, or an error will be reported:

« only one value vector can be specified for any cell in the table,
o all value vectors must be the same length,
e is.atomic() must evaluate to TRUE for the vector.

Example: treating a logical vector as values.

tabular( I(X > 0) + I(X < 0)
~ ((n=1) + mean + sd) )

n mean sd

I(X>0) 10 05 0527
I(X<0) 10 05 0527

FALSE

2.4 “Pseudo-functions”

Several directives to tables may be embedded in the table formula. This is done using “pseudo-functions”.
Syntactically they look like function calls, but reserved names are used. In most cases, their action applies to
later factors in the term in which they appear. For example,

X*Justify(r)*(Y + Format(digits=2)*Z) + A

will apply the Justify(r) directive to both Y and Z, but the Format (digits=2) directive will only apply to
Z, and neither will apply to A.
2.4.1 Format()

By default tables formats each column using the standard format () function, with arguments taken from
the format.tabular() call (see section 2.1.2).

The Format () pseudo-function does two things: it changes the formatting, and it specifies that all values
it applies to will be formatted together. The “call” to Format looks like a call to format, but without

11



specifying the argument x. When tabular () formats the output it will construct x from the entries in the
table governed by the Format () specification.

Example: The mean and standard deviation are both governed by the same format, so they are displayed
with the same number of decimal places, chosen so that the smallest values (the means) show two significant
digits.
tabular( (F+1) ~ (n=1)

+ Format(digits=2)*X*(mean + sd) )

X

F n mean sd

a 5 —0.048 0.632
b ) 0.012 0.554
All 10 -0.018 0.561

FALSE

For customized formatting, an alternate syntax is to pass a function call to Format (), rather than a list of
arguments. The function should accept an argument named x (but as with the regular formatting, x should
not be included in the formula), to contain the data. It should return a character vector of the same length
as x.

Example: Use a custom function and sprintf () to display a standard error in parentheses.

StdErr <- function(x) sd(x)/sqrt(length(x))

fmt <- function(x, digits, ...) {
s <- format(x, digits=digits, ...)
is_stderr <- (1l:length(s)) > length(s) %/% 2
s[is_stderr] <- sprintf("$(%s)$", slis_stderr])
s[!is_stderr] <- latexNumeric(s['!is_stderr])

s
}
tabular( Format(fmt(digits=1))*(F+1) ~ X*(mean + StdErr) )
X
F mean  StdErr
a —0.05 (0.28)

b 0.01 (0.25)
Al —0.02 (0.18)

FALSE

Character values in cells in the table are handled specially; see section 3.1 below.

2.4.2 .Format()

The pseudo-function .Format () is mainly intended for internal use. It takes a single integer argument, saying
that data governed by this call uses the same formatting as the format specification indicated by the integer.
In this way entries can be commonly formatted even when they are not contiguous. The integers are assigned
sequentially as the format specification is parsed; users will likely need trial and error to find the right value
in a complicated table with multiple formats.

Example: Format two separated columns with the same format.

tabular( (F+1) ~ X*(Format(digits=2)*mean
+ (n=1) + .Format(1)*sd) )

12



X

F mean n sd

a —-0.048 5 0.632
b 0.012 5 0.554
All  —0.018 10 0.561

FALSE

2.4.3 Heading()

Normally tabular() generates row and column labels by deparsing the expression being tabulated. These
can be changed by using the Heading() pseudo-function, which replaces the heading on the next object
found. The heading can either be a name or a string in quotes. If the character.only argument is TRUE,
the expression will be evaluated to a string which will be used as a heading. I4TEX codes which are not
syntactically valid R can be used either in quoted strings or with character.only = TRUE.

If no argument is passed, the next label is suppressed.

There’s an optional argument override, which must be either TRUE or FALSE if present. If it is TRUE (or not
present), then the heading will override a previously specified heading. If FALSE, it will not. The latter seems
likely only to be of use in automatically generated code, and is used in the automatically generated labels for
factors.

Another optional argument is nearData. This is used only when two terms in a table are concatenated using
+, and they don’t have the same number of rows or columns. Under the default TRUE value, the smaller one
is moved closer to the data in the table (i.e. to the right for row labels, down for column labels); if FALSE, it
is moved in the opposite direction.

Example: Replace F with a Greek ®, and suppress the label for X.

tabular( (Heading("$\\Phi$")*F+1) ~ (n=1)
+ Format(digits=2)+*Heading()*X*(mean + sd) )

(0] n mean sd

a 5 —0.048 0.632
b 5) 0.012 0.554
All 10 -0.018 0.561

FALSE

Example: Use nearData = FALSE to push a label away from the data:

tabular( X*F + Heading('"near")*X
+ Heading("far", nearData = FALSE)*X ~ mean + sd )

F mean sd
X a —0.04769 0.6318
b 0.01177 0.5541
near —0.01796 0.5611
far —0.01796 0.5611
FALSE

2.4.4 Justify()

The Justify() pseudo-function is used to specify the text justification of the headers and data values in the
table. If called with one argument, that value is used for both labels and data; if called with two arguments,
the first is used for the labels, the second for the data. If no Justify() specification is given, the default

13



passed to format (), print() or toLatex() will be used. Values may be specified without quotes if they
are legal R names; quoted strings may also be used. (The latter is useful for ITEX output, for example
Justify("r@{}"), to suppress column spacing on the right.)

Example:

tabular( Justify(r)*(F+1) ~ Justify(c)*(n=1)
+ Justify(c,r)*Format(digits=2)*X*(mean + sd) )

X

F n mean sd

a 5 —0.048 0.632
b 5 0.012 0.554
All 10 -0.018 0.561

FALSE

2.4.5 Percent()

The Percent () pseudo-function is used to specify a statistic that depends on other values in the table. It
has two optional arguments:

o denom="all": This specifies how the denominator (argument y to fn below) is set. The most commonly
used values are "all", meaning all values are used, "row", meaning only the values in the current row
are used, "col", meaning only the values in the current column are used.

The special syntax Equal(...) will record the expressions in ..., and ignore any factor based subsetting if
the factor does not appear among the expressions. Similarly Unequal(...) will use values which differ in
any of the expressions in ... from the values in the current cell. (In fact, the mechanism is more general.

The expressions in Equal(...) or Unequal(...) are deparsed and treated as strings. Any logical vector
elsewhere in the table may be labelled with a string using the labelSubset function and those labels will be
respected. Unlabelled logical vectors in the table formula will always be used for subsetting.)

If a logical vector is given, it is used to select which values form the denominator. Anything else is just
passed to fn as given. - fn=percent This is the function which actually does the computation. The default
definition is function(x, y) 100xlength(x) /length(y), giving the percentage count, but any other two
argument function could be used.

These two examples are different ways of producing the same table:

tabular( (Factor(gear, "Gears") + 1)
*((n=1) + Percent()
+ (RowPct=Percent ("row"))
+ (ColPct=Percent("col")))
~ (Factor(carb, "Carburetors") + 1)
*Format (digits=1), data=mtcars )

tabular( (Factor(gear, "Gears") + 1)
*((n=1) + Percent()
+ (RowPct=Percent (Equal(gear))) # Equal, not "row"
+ (ColPct=Percent(Equal(carb)))) # Equal, not "col"
~ (Factor(carb, "Carburetors") + 1)
*Format (digits=1), data=mtcars )

14



Carburetors

Gears 1 2 3 4 6 8 All
3 n 3 4 3 5 0 0 15
Percent 9 12 9 16 0 0 47
RowPct 20 27 20 33 0 0 100
ColPct 43 40 100 50 0 0 47
4 n 4 4 0 4 0 0 12
Percent 12 12 0 12 0 0 38
RowPct 33 33 0 33 0 0 100
ColPct 57 40 0 40 0 0 38
5 n 0 2 0 1 1 1 5
Percent 0 6 0 3 3 3 16
RowPct 0 40 0 20 20 20 100
ColPct 0 20 0 10 100 100 16
All n 7 10 3 10 1 1 32
Percent 22 31 9 31 3 3 100
RowPct 22 31 9 31 3 3 100

ColPct 100 100 100 100 100 100 100

FALSE

2.4.6 Arguments()

The Arguments () pseudo-function is an exception to the rule that pseudo-functions apply to later factors in
the table. What it does is to specify (additional) arguments to the summary function (see section 2.3.1). For
example, the weighted.mean () function takes two arguments: x and w. To use it in a table, you would specify
the values to use as x via the usual mechanism for the analysis variable (section 2.3.5), and include a term
Arguments (w=weights) either before or after it. The function will be called as weighted.mean (x[subset],
w=weights[subset]), where subset is a logical vector indicating which rows of data belong in the current
cell.

It is actually a little more complicated than as described above. The arguments to Arguments are evaluated
in full, then only those which are length n are subsetted. And if no analysis variable has been specified,
but Arguments () has been, then the function will be called without the x[subset] argument. Finally, the
Arguments () entry will not create a heading.

For example:

# This ©1s the example from the wetghted.mean help page
wt <- c(5, 5, 4, 1)/15
x <- ¢(3.7,3.3,3.5,2.8)
gp <- c(1,1,2,2)
tabular( (Factor(gp) + 1)
~ weighted.mean*x*Arguments(w = wt) )

weighted.mean

gp X

1 3.500

2 3.360

All 3.453
FALSE

The same table (without the x heading) can be produced using

15



tabular( (Factor(gp) + 1)
~ Arguments(x, w = wt)*weighted.mean )

The order of the weighted.mean and Arguments() factors makes no difference.

2.4.7 DropEmpty()

DropEmpty () indicates that cells (or whole rows or columns of the table) should be dropped if they contain
no observations. This will prevent ugly results like NA or NaN from showing up in the table.

This pseudo-function takes two optional arguments, which (with default value c("row", "col", "cell"))
and empty (with default value "").

If the which argument contains "row", then any row in the table in which all cells are empty will be dropped.
Similarly, if it contains "col", empty columns will be dropped. If it contains "cell", then cells in rows and
columns that are not dropped will be set to the empty string.

For example, without using DropEmpty (), this table is ugly:

set.seed(730)
df <- data.frame(Label = LETTERS[1:9],
Group = rep(letters[1:3], each=3),
Value = rnorm(9),
stringsAsFactors = TRUE)
tabular( Label ~ Group*Value*mean,
data = df[1:6,])

Group
a b ¢

Value Value Value
Label mean mean mean
A —0.92605 NaN NaN
B —0.69747 NaN NaN
C 0.05293 NaN NaN
D NaN 0.7782 NaN
E NaN 0.9822 NaN
F NaN —1.0628 NaN
G NaN NaN NaN
H NaN NaN NaN
I NaN NaN NaN

FALSE

This looks much better:

tabular( Label ~ Group*Value*mean*
DropEmpty (empty="."),
data = df[1:6,])

16



Group

a b

Value Value
Label mean mean
A —0.92605
B —0.69747
C 0.05293
D 0.7782
E 0.9822
F . —1.0628

2.5 Formula Functions

Currently several examples of formula functions are provided. Not all are particularly robust; e.g. Hline ()
only works for ETEX output and must be in a particular position in the formula. Users can provide their own
as well. Such functions should return a language object, which will be substituted into the formula in place
of the formula function call.

2.5.1 A110

This function expands all the columns from a dataframe into separate variables in the table. It has syntax

A11(df, numeric=TRUE, character=FALSE, logical=FALSE,
factor=FALSE, complex=FALSE, raw=FALSE, other=FALSE,
texify=getOption("tables.texify", FALSE))

The arguments are

e df: A dataframe or matrix whose columns are to be displayed

e numeric, character, logical, factor, complex and raw: Whether to include columns of the corre-
sponding types in the table.

e other: Whether to include columns that match none of the previous types.

o texify: Whether to escape IMTEX special characters. See section 3.1.

If functions are given for any of the selection arguments, the columns will be transformed according to
the specified function before inclusion. For example, using factor=as.character will convert factors into
character vectors in the table.

Example: Show the means of the numeric columns in the iris data.

tabular( Species ~ Heading()*mean*All(iris), data=iris)

Species Sepal.Length  Sepal.Width Petal.Length Petal. Width

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026
FALSE

2.5.2 All0bs(), RowNum()

The A110bs () function displays all of the observations in a dataset. It does this by creating a factor with a
different level for each observation, and a summary statistic function which just displays the observation.
It works with DropEmpty () to drop rows (or columns) from the table if they correspond to non-existent
observations. For example,

17



df <- mtcars[1:10,]
tabular(Factor(cyl)*Factor(gear)*A110bs(df) ~
rownames (df) + mpg, data=df)

cyl gear rownames(df) mpg
4 4 Datsun 710 22.8
Merc 240D 24.4
Merc 230 22.8
6 3 Hornet 4 Drive 21.4
Valiant 18.1
4 Mazda RX4 21.0
Mazda RX4 Wag  21.0
Merc 280 19.2
8 3 Hornet Sportabout 18.7
Duster 360 14.3

FALSE

Often (as with the mtcars dataset) the full dataset takes a lot of space to display. In that case, it can be
displayed in multiple columns using a combination of the A110bs() and RowNum() functions. Because this
affects both rows and columns in the resulting table, the code is a little unusual. You would normally compute
the RowNum () formula function outside the call to tabular (), and include it in the row specification wrapped
in I() and in the column specification in the within argument to A110bs(). For example,

rownum <- with(mtcars, RowNum(list(cyl, gear)))
tabular(Factor(cyl) *Factor (gear)*I(rownum) -~
mpg * AllObs(mtcars, within = list(cyl, gear, rownum)),
data=mtcars)

cyl gear mpg

4 3 21.5
4 228 244 228 324 304
339 273 214

3 26.0 304
6 3 214 18.1
4 21.0 21.0 19.2 178
5 19.7
8 3 18.7 143 164 173 15.2
104 104 147 155 152
13.3 19.2
5) 15.8 15.0
FALSE

Despite its name, RowNum can be used to specify columns instead of rows, for a column-major display. In this
case, its perrow argument should be interpreted as “per column”. For example,

rownum <- with(mtcars, RowNum(list(cyl, gear), perrow = 2))
tabular (Factor(cyl)*Factor(gear) *
A110bs(mtcars, within = list(cyl, gear, rownum)) -~
mpg * I(rownum),
data=mtcars)

18



cyl gear mpg

4 3 21.5
4 22.8 228 304 273
244 324 339 214

5 26.0
30.4
6 3 21.4
18.1
4 21.0 19.2
21.0 178
5 19.7

8 3 18.7 164 152 104 155 133
14.3 173 104 14.7 152 19.2
) 15.8
15.0

FALSE

2.5.3 Hline()

This function produces horizontal lines in the table. It only works for LaTeX output, and must be the first
factor in a term in the table formula. It has syntax

Hline (columns)

The argument is
e ‘columns: An optional vector listing which columns should get the line.

Example:

tabular( Species + Hline(2:5) + 1
~ Heading() *mean*Al1l(iris), data=iris)

Species Sepal.Length  Sepal.Width  Petal.Length Petal. Width

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

All 5.843 3.057 3.758 1.199
FALSE

2.5.4 Literal()

This function inserts literal text as a label. It has syntax

Literal(x)

The single argument is the text to insert. It is used by the Hline () function to insert the text.

2.5.5 PlusMinus()

This function produces table entries like z 4+ y with an optional header. It has syntax

PlusMinus(x, y, head, xhead, yhead, digits = 2,
character.only = FALSE, ...)

The arguments are

19



e x, y: These are expressions which should each generate a single column in the table. The x value will
be flush right, the y value will be flush left, with the 4+ symbol between.

e head: If not missing, this header will be put over the pair of columns.

e xhead, yhead: If not missing, these will be put over the individual columns.

e digits, ...: These arguments will be passed to the standard format () function.

e character.only: If TRUE, the head, xhead and yhead arguments will be interpreted as expressions
evaluating to character values.

Example: Display mean + standard error.

StdErr <- function(x) sd(x)/sqrt(length(x))
tabular( (Species+1) ~ All(iris)*
PlusMinus(mean, StdErr, digits=1), data=iris )

Species Sepal.Length  Sepal.Width Petal.Length Petal. Width

setosa 5.01 £ 0.05 343 +0.06 1.46 +£0.02 0.25 £ 0.01

versicolor  5.94 + 0.07 277 £0.04 426 +£0.07 1.33 +£0.03

virginica  6.59 £+ 0.09 297 £0.056 5.55+0.08 2.03+0.04

All 5.84 + 0.07 3.06 +£ 0.04 3.76 £ 0.14 1.20 £+ 0.06
FALSE

2.5.6 Paste()

This function produces table entries made up of multiple values. It has syntax

Paste(..., head, digits=2, justify="c", prefix="", sep="",
postfix="")
The arguments are
e ‘...: Expressions to be displayed in the columns of the table.

e ‘head: If not missing, this will be used as a column heading for the combined columns.

e ‘digits: Digits used in formatting. If a single value is given, all columns will be formatted in common.
If multiple values are given, each is formatted separately.

e ‘justify: One or more justifications to use on the individual columns.

o ‘prefix, sep, postfix: Text to use before, between, and after the columns.

Example: Display a confidence interval.

lcl <- function(x) mean(x) - qt(0.975, df=length(x)-1)*StdErr(x)
ucl <- function(x) mean(x) + qt(0.975, df=length(x)-1)*StdErr(x)
tabular( (Species+1) ~ All(iris)*
Paste(lcl, ucl, digits=2,
head="95\\’ CI", sep=",",
postfix="1"),
data=iris )

prefix="[",

Sepal.Length  Sepal.Width Petal.Length Petal. Width

Species 95% CI 95% CI 95% CI 95% CI
setosa [4.91, 511] [3.32, 3.54] [1.41, 1.51] [0.22, 0.28]
versicolor [5.79, 6.08] [2.68, 2.86] [4.13, 4.39] [1.27, 1.38]
virginica  [6.41, 6.77] [2.88, 3.07] [5.40, 5.71] [1.95, 2.10]
All 571, 5.98] [2.99, 3.13] [3.47, 4.04] [1.08, 1.32]
FALSE

20



2.5.7 Factor(), RowFactor() and Multicolumn()

The Factor () function converts its argument into a factor, but keeps the original name for a column heading.
RowFactor () is designed to be used only for IXTEX output: it produces multiple rows the way a factor does,
but with more flexibility in the formatting. The Multicolumn() function is also designed for ITEX output:
it displays factor levels in the style where the level is displayed across multiple columns on its own line.

They have syntax

Factor(x, name, levelnames, texify=getOption('"tables.texify", FALSE))
RowFactor(x, name, levelnames, spacing=3, space=1,
nopagebreak="\\nopagebreak", texify=getOption("tables.texify", FALSE))
Multicolumn(x, name, levelnames, width=2, first=1, justify="1",
texify=getOption("tables.texify", FALSE))

The arguments are

e x: A variable to be treated as a factor.

o name: The name to be used for the factor; by default, the name passed as x.

e levelnames An optional argument to allow customization of the displayed level names.
e texify Whether to escape ITEX special characters. See section 3.1.

« spacing Extra spacing is added before every group of spacing lines.

» space How much extra space to add (in “ex” units).

e nopagebreak Macro to insert to suppress page breaks except between groups.

e width How many columns for the label?

e first: What is the first column?

o justify: What justification to use.

Example: Show the first 15 lines of the iris dataset, in groups of 5 lines.

subset <- 1:15
tabular( RowFactor(subset, "$i$", spacing=5) ~
A11(iris[subset,], factor=as.character)+*Heading()*identity )

.

Sepal.Length  Sepal. Width  Petal.Length Petal. Width  Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
FALSE

To add extra space after each high level group in a multi-way classification, use spacing = 1. For example:

21



set.seed(1000)
dat <- expand.grid(Block=1:3, Treatment=LETTERS[1:2],
Subset=letters[1:2])
dat$Response <- rnorm(12)
toLatex( tabular( RowFactor(Block, spacing=1)
* RowFactor(Treatment, spacing=1, space=0.5)
* Factor(Subset)
~ Response*Heading()*identity, data=dat),
options=list(rowlabeljustification="c") )

Block Treatment Subset Response

1 A a —0.44578
b —0.47587

B a 0.63939

b —1.37312

2 A a —1.20586
b 0.71975

B a —0.78655

b —0.98243

3 A a 0.04113
b —0.01851

B a —0.38549

b —0.55449

For longer tables, the "longtable" environment allows the table to cross page boundaries. Using this is
more complicated, as in the example below. The toprule setting inserts the caption as well as the top rule,
because the longtable package requires it to be within the table. The midrule setting gets the headings to
repeat on subsequent pages. (I've done all of this in a way that is compatible with the booktabs style; if you
want the default style, use \hline in place of the booktabs \toprule and \midrule macros in the options
settings instead.) To avoid extra spacing at the top of those pages, we need to undo the automatic addition
of a \normalbaselineskip there, and use suppressfirst=FALSE so that the first page doesn’t get messed
up. Whew!

subset <- 1:50
toLatex( tabular( RowFactor(subset, "$i$", spacing=5,
suppressfirst=FALSE) ~
A1l (iris[subset,], factor=as.character)+*Heading()*identity ),
options = list(tabular="longtable",
toprule="\\caption{This table crosses page boundaries.}\\\\
\\toprule",

midrule="\\midrule\\\\[-2\\normalbaselineskip] \\endhead\\hline\\endfoot") )

Table 1: This table crosses page boundaries.

.

Sepal.Length  Sepal.Width Petal.Length Petal. Width  Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

22



Table 1: This table crosses page boundaries.

Sepal.Length ~ Sepal.Width Petal.Length Petal. Width  Species

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

5.4
4.6
5.0
4.4
4.9

5.4
4.8
4.8
4.3
5.8

5.7
5.4
5.1
5.7
5.1

5.4
5.1
4.6
5.1
4.8

5.0
5.0
5.2
5.2
4.7

4.8
5.4
5.2
5.5
4.9

5.0
5.5
4.9
44
5.1

5.0
4.5
44
5.0
5.1

3.9
3.4
3.4
2.9
3.1

3.7
3.4
3.0
3.0
4.0

4.4
3.9
3.5
3.8
3.8

3.4
3.7
3.6
3.3
3.4

3.0
3.4
3.5
3.4
3.2

3.1
3.4
4.1
4.2
3.1

3.2
3.5
3.6
3.0
3.4

3.5
2.3
3.2
3.5
3.8

1.7
1.4
1.5
1.4
1.5

1.5
1.6
14
1.1
1.2

1.5
1.3
14
1.7
1.5

1.7
1.5
1.0
1.7
1.9

1.6
1.6
1.5
14
1.6

1.6
1.5
1.5
14
1.5

1.2
1.3
14
1.3
1.5

1.3
1.3
1.3
1.6
1.9

0.4
0.3
0.2
0.2
0.1

0.2
0.2
0.1
0.1
0.2

0.4
0.4
0.3
0.3
0.3

0.2
0.4
0.2
0.5
0.2

0.2
0.4
0.2
0.2
0.2

0.2
0.4
0.1
0.2
0.2

0.2
0.2
0.1
0.2
0.2

0.3
0.3
0.2
0.6
0.4

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa
setosa

23



Table 1: This table crosses page boundaries.

i Sepal.Length ~ Sepal.Width Petal.Length Petal. Width  Species

46 4.8 3.0 1.4 0.3 setosa
47 5.1 3.8 1.6 0.2 setosa
48 4.6 3.2 1.4 0.2 setosa
49 5.3 3.7 1.5 0.2 setosa
50 5.0 3.3 1.4 0.2 setosa

To suppress the row numbering, use suppress=3 in the call to tabular. (It is 3 because we need to suppress
the column heading, the rewritten labels for the rows, and the original labels. Trial and error is the best way
to determine this!) Unfortunately, the spacing features of RowFactor () won’t work without the row labels.

subset <- 1:10

tabular( Factor(subset) ~
Al1(iris[subset,], factor=as.character)+*Heading()*identity,
suppress=3 )

Sepal.Length  Sepal.Width  Petal.Length Petal. Width  Species

5.1 3.5 14 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 14 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
FALSE

(It is actually possible to get this to work with RowFactor (), but it is ugly: set the name and level names to
" and set the justification to "1@{}" to suppress the intercolumn spacing. Then the column of row labels
will be there, but it will be zero width and invisible.)

RowFactor with spacing > 1 will add the nopagebreak macro at the beginning of each label except the
first in the group. This can produce IXTEX errors in any column except the first one. One workaround for
this is to post-process the table to move the macro. For example, if tab contains the result of tabular ()
and IBTEX complains about misplaced \nopagebreak macros, this will allow it to be displayed properly:

code <- capture.output( toLatex( tab ) )
code <- sub(""(.*) (\\\\nopagebreak )", "\\2\\1", code)
cat(code, sep = "\n")

To get group labels to span multiple columns, the levelnames argument can be used with embedded

IXTEX code. For example,

tabular( Multicolumn(Species, width=3,
levelnames=paste("\\textit{Iris", levels(Species),"}"))
* (mean + sd) ~ All(iris), data=iris, suppress=1)

24



Sepal.Length  Sepal.Width  Petal.Length  Petal. Width

Iris setosa

mean 5.0060 3.4280 1.4620 0.2460

sd 0.3525 0.3791 0.1737 0.1054
Iris versicolor

mean 5.9360 2.7700 4.2600 1.3260

sd 0.5162 0.3138 0.4699 0.1978
Iris virginica

mean 6.5880 2.9740 5.5520 2.0260

sd 0.6359 0.3225 0.5519 0.2747

FALSE

3 Further Detalils

3.1 Formatting

As mentioned in 2.4.1, formatting in tables depends on the standard format () function or other user-selected
functions. Here are the details of how it is done.

The format .tabular () method does the first part of the work. First, it constructs the calls to the appropriate
formatting functions, and uses them to format all of the non-character entries in the table. The character
entries are left as-is, except as described below. This converts the tabular object to a character array.

The procedure goes as follows:

1. Entries in the table without specified formatting are formatted first, separately by column using the
format () function. This is so that entries in a given column will end up with the same character width
and (with the default settings) with the same number of decimal places.

2. Entries in the table with specified formatting are grouped according to the format specification. For
example, if two columns both share the same Format (), they will be formatted in a single call. This
results in such entries ending up with the same character width and (with the default settings) with
the same number of decimal places.

3. If the toLatex argument is TRUE, any numeric entries are passed to the latexNumeric() function (see
2.1.6), which replaces blanks and minus signs with fixed width spaces and ETEX minus signs so that
all entries will display in the same width. This means that numeric values will normally have decimal
points aligned, unless the formatting function explicitly removes leading spaces. Non-numeric entries are
passed through the Hmisc::latexTranslate function so that special characters are displayed properly.

4. If the toLatex argument is FALSE, an attempt is made to justify the results using simple ASCII spacing,
according to the Justify() specification with the justification argument used as a default.

Note that IXTEX special characters will not be escaped in data when toLatex () is called, but row and column
headings generated by A11(), Factor(), etc. will by default not have the escapes done. Those functions
have a texify argument that can be set to TRUE to enable this behaviour (e.g. if the label is not meant to be
processed by BTEX). For example, with the definition

df <- data.frame(A = factor(c( "$", "\\" ) ), B_label=1:2)

the code
tabular( mean ~ A*B_label, data=df )

would fail, as the labels would include the special characters. But this will work, provided the Hmisc package
is available:

25



options(tables.texify = TRUE)
tabular( mean ~ Factor(A)*Al1(df), data=df )

## Loading required namespace: Hmisc

A
$
B label B _label
mean 2 1
FALSE

Use of the texify option requires that the suggested package "Hmisc" be available.

As mentioned above, character values in cells in the table are handled specially. If the default format function
(or a custom function named format) is used, then those character values are not formatted, they are just
copied into the result. (This is so that a column can have mixed numeric and character values, and the
numerics are not converted to character before formatting.) If you want to use format on character values,
you will need to use a custom formatting function with a different name.

3.2 Missing Values

By default, most summary statistics in R return NA if any of the input values are NA, but have ways to treat
NA differently. For example, the mean() function has the na.rm argument:

dat <- data.frame( a = ¢c(1, 2, 3, NA), b = 1:4 )
mean (dat$a)

## [1] NA

mean(dat$a, na.rm=TRUE)

## [1] 2

The tabular () function itself has no way to specify special NA handling, but there are several ways to do
this yourself, depending on how you want them handled. To ignore NA values within the column, define a
new function which sets the different behaviour. For example,

Mean <- function(x) base::mean(x, na.rm=TRUE)
tabular( Mean ~ a + b, data=dat )

a b
Mean 2 2.5

FALSE

An alternative approach is to use na.omit() to work on a subset of your data which has rows with any
missing values removed, e.g.

tabular( mean ~ a + b, data = na.omit(dat) )

a b

mean 2 2

FALSE

A third possibility is to use the complete.cases() function to remove missings only from some columns, e.g.

26



tabular(
Mean ~ (1 + Heading(Complete)*complete.cases(dat)) * (a + b),
data=dat )

All Complete
a b a b
Mean 2 2.5 2 2

FALSE

Missing values in factors are normally ignored, i.e. observations whose value is missing won’t match any
category. If you would like NA to be used as an additional category, use exclude = NULL in a call to factor ()
when you create the variable, e.g. compare the following two tables:

A <- factor(dat$a)
tabular( A + 1 ~ (n=1))

A

n
1 1
2 1
3 1
All 4

FALSE

A <- factor(dat$a, exclude = NULL)
tabular( A + 1 ~ (n=1) )

A

1
2
3
NA
All

N = ==

FALSE

3.3 Subsetting and Joining Tables

It is possible to select a subset of a table using the usual R matrix indexing on the table object. For example,
this table contains rows with no data in them, and those yield ugly NA and NaN statistics:

set.seed(1206)
q <- data.frame(p = rep(c("A","B"), each = 10, length.out = 30),
a = rep(c(1,2,3),each = 10),id = seq(30),
b = round(runif(30,10,20)),
¢ = round(runif (30,40,70)),
stringsAsFactors = FALSE)
tab <- tabular((Factor(p)*Factor(a)+1)
~ (N =1) + (b + c)*(mean+sd), data = q)

tab

27



p a N mean sd mean sd

A 1 10 14.40 3.026 55.70 6.447
2 0 NaN NA NaN NA
3 10  14.50 2.877 52.80 8.954

B 1 0 NaN NA NaN NA
2 10 14.40 2.836 56.30 7.889
3 0 NaN NA NaN NA
All 30 14.43 2.812 54.93 7.714

FALSE

To omit those rows, use matrix-like subsetting to select the rows where the first column of data (i.e. N) is
greater than zero:

tab[ tab[,1] > 0, ]

b ¢
P a N mean sd mean sd
A1 10 14.40 3.026 55.70 6.447
3 10 14.50 2.877 52.80 8.954

B 2 10 1440 2.836 56.30 7.889
All 30 14.43 2812 5493 7.714

FALSE

Similarly, cbind () can be used to join tables that have identical row labels, and rbind () can be used to join
tables with identical column labels. Thus the top part of the table above could be produced in another way:

formula <- Factor(p)*Factor(a) ~
(N =1) + (b + c)*(mean+sd)
tab <- NULL
for (sub in c("A", "B"))
tab <- rbind(tab, tabular( formula,
data = subset(q, p == sub) ) )

tab
b c
a N mean sd mean sd
A 1 10 144 3.026 55.7 6.447
3 10 145 2877 528 8.954
B 2 10 144 283 56.3 7.889
FALSE

It is also possible to edit the row or column labels after constructing the table. For example,

colLabels(tab)

#H [,11 [,21 [,31 [,4] [,s5]

## [1,] b <NA> ¢ <NA>

# [2,] N mean sd mean sd

## Attributes: dim, justification, colnamejust, justify, suppress, nearData, class

labs <- colLabels(tab)
labs[1, 2] <- "New label"
colLabels(tab) <- labs

28



tab

New label c
a N mean sd mean sd
A 1 10 144 3.026 55.7 6.447
3 10 145 2877 528 8.954
B 2 10 144 2836 56.3 7.889
FALSE

Note that <NA> in the column labels means “same as the label to the left”, and in the row labels it means
“same as the label above”. This is used in constructing multi-column or multi-row labels.

3.4 knitr, rmarkdown and kableExtra support

This vignette was originally written many years ago using Sweave, and is still available in that format.
Nowadays I would recommend most users to use knitr instead: it is easier and more flexible. The input may
be in Noweb syntax very similar to Sweave, or Markdown syntax using the rmarkdown package, as in this file.

One specific advantage of using knitr or rmarkdown is that explicit calls to toLatex () are not needed: by
default, tabular objects will print in the appropriate formatting for KTEX or HTML output.

The kableExtra package may be used to customize displays. For example, the code below causes the table to
be full width, and the colour of the 4th column is changed. These features require additional IXTEX packages;
see the kableExtra documentation for details.

library(magrittr)

library(kableExtra)

toKable(tab) %>%
kable_styling(full_width = TRUE) %>7

column_spec(4, color = "red")
New label C
a N mean sd mean sd
A 1 10 14.4 3.026 55.7 6.447
3 10 14.5 2.877 52.8 8.954
B 2 10 14.4 2.836 56.3 7.889

See the HTML vignette (which is written in rmarkdown) for more discussion and examples.

3.5 Captions, labels, etc.

LaTeX breaks the description of tables into two parts: the tabular environment holding the data, and the
optional table environment surrounding it, where captions, labels, where to place the table in the document,
etc. are all specified. The tables package concentrates on the details of the tabular part, because I didn’t
want to duplicate the myriad options in LaTeX to set up the table wrapper. However, others are not so
lazy, and Yihui Xie’s knitr package includes the kable () function which does these things. (It is much less
flexible about the actual contents, however.) Rather than copying all his code, I have added the latexTable
function. It uses kable() to produce a dummy table, then replaces the tabular part with the result of the
tabular () function from this package. For example, this code produces Table 2:

latexTable(tabular((Species + 1) ~ (n=1) + Format(digits=2)x*
(Sepal.Length + Sepal.Width)*(mean + sd),
data=iris),
caption = "Iris sepal data", label = "sepals")

29



Table 2: Iris sepal data
Sepal.Length ~ Sepal. Width

Species n  mean sd mean  sd

setosa 50 5.01 0.35 3.43 0.38
versicolor 50 5.94 0.52 2.77  0.31
virginica 50 6.59 0.64 297 0.32
All 150 584 083 3.06 0.44

which should have floated to the top or bottom of page 30.

4 Acknowledgments
I gratefully acknowledge helpful suggestions and hints from Rich Heiberger, Frank Harrell, Dieter Menne,

Marius Hofert, Jeff Newmiller and Jeffrey Miller. Hao Zhu was extremely helpful in adding the kableExtra
support.

References

Fear, Simon. 2005. Publication Quality Tables in LaTeX. http://www.ctan.org/tex-archive/macros/latex/c
ontrib/booktabs.

30


http://www.ctan.org/tex-archive/macros/latex/contrib/booktabs
http://www.ctan.org/tex-archive/macros/latex/contrib/booktabs

	Introduction
	Reference
	Function syntax
	tabular()
	format(), print(), toLatex()
	as.matrix(), write.csv.tabular(), write.table.tabular()
	as.tabular()
	table_options(), booktabs()
	latexNumeric()

	Operators
	e_1 + e_2
	e_1 * e_2
	e_1 \sim e_2
	e_1 = e_2

	Terms in Formulas
	Closures or other functions
	Factors
	Logical vectors
	Language Expressions
	Other vectors

	``Pseudo-functions''
	Format()
	.Format()
	Heading()
	Justify()
	Percent()
	Arguments()
	DropEmpty()

	Formula Functions
	All()
	AllObs(), RowNum()
	Hline()
	Literal()
	PlusMinus()
	Paste()
	Factor(), RowFactor() and Multicolumn()


	Further Details
	Formatting
	Missing Values
	Subsetting and Joining Tables
	knitr, rmarkdown and kableExtra support
	Captions, labels, etc.

	Acknowledgments
	References

