Upload local metadata files to the cloud location
(repository, bucket, and prefix) you set in
tar_option_set() in _targets.R.
tar_meta_upload(
meta = TRUE,
progress = TRUE,
process = TRUE,
crew = TRUE,
verbose = TRUE,
strict = FALSE,
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store")
)Logical of length 1, whether to process the main metadata file
at _targets/meta/meta.
Logical of length 1, whether to process the progress file at
_targets/meta/progress.
Logical of length 1, whether to process the process file at
_targets/meta/process.
Logical of length 1, whether to process the crew file at
_targets/meta/crew. Only exists if running targets with crew.
Logical of length 1, whether to print informative console messages.
Logical of length 1. TRUE to error out if the file
does not exist locally, FALSE to proceed without an error or
warning. If strict is FALSE and verbose is TRUE,
then an informative message will print to the R console.
Character of length 1, path to the
target script file. Defaults to tar_config_get("script"),
which in turn defaults to _targets.R. When you set
this argument, the value of tar_config_get("script")
is temporarily changed for the current function call.
See tar_script(),
tar_config_get(), and tar_config_set() for details
about the target script file and how to set it
persistently for a project.
Character of length 1, path to the
targets data store. Defaults to tar_config_get("store"),
which in turn defaults to _targets/.
When you set this argument, the value of tar_config_get("store")
is temporarily changed for the current function call.
See tar_config_get() and tar_config_set() for details
about how to set the data store path persistently
for a project.
Other metadata:
tar_meta(),
tar_meta_delete(),
tar_meta_download(),
tar_meta_sync()
if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
tar_script({
library(targets)
library(tarchetypes)
tar_option_set(
resources = tar_resources(
aws = tar_resources_aws(
bucket = "YOUR_BUCKET_NAME",
prefix = "YOUR_PROJECT_NAME"
)
),
repository = "aws"
)
list(
tar_target(x, data.frame(x = seq_len(2), y = seq_len(2)))
)
}, ask = FALSE)
tar_make()
tar_meta_upload()
})
}