R/utils_default_stats_formats_labels.R
default_stats_formats_labels.Rd
Utility functions to get valid statistic methods for different method groups
(.stats
) and their associated formats (.formats
), labels (.labels
), and indent modifiers
(.indent_mods
). This utility is used across tern
, but some of its working principles can be
seen in analyze_vars()
. See notes to understand why this is experimental.
get_stats(
method_groups = "analyze_vars_numeric",
stats_in = NULL,
custom_stats_in = NULL,
add_pval = FALSE
)
get_stat_names(stat_results, stat_names_in = NULL)
get_formats_from_stats(
stats,
formats_in = NULL,
levels_per_stats = NULL,
tern_defaults = tern_default_formats
)
get_labels_from_stats(
stats,
labels_in = NULL,
levels_per_stats = NULL,
label_attr_from_stats = NULL,
tern_defaults = tern_default_labels
)
get_indents_from_stats(
stats,
indents_in = NULL,
levels_per_stats = NULL,
tern_defaults = as.list(rep(0L, length(stats))) %>% setNames(stats),
row_nms = lifecycle::deprecated()
)
tern_default_stats
tern_default_formats
tern_default_labels
summary_formats(type = "numeric", include_pval = FALSE)
summary_labels(type = "numeric", include_pval = FALSE)
tern_default_stats
is a named list of available statistics, with each element
named for their corresponding statistical method group.
tern_default_formats
is a named vector of available default formats, with each element
named for their corresponding statistic.
tern_default_labels
is a named character
vector of available default labels, with each element
named for their corresponding statistic.
(character
)
indicates the statistical method group (tern
analyze function)
to retrieve default statistics for. A character vector can be used to specify more than one statistical
method group.
(character
)
statistics to retrieve for the selected method group. If custom statistical
functions are used, stats_in
needs to have them in too.
(character
)
custom statistics to add to the default statistics.
(flag
)
should "pval"
(or "pval_counts"
if method_groups
contains
"analyze_vars_counts"
) be added to the statistical methods?
(list
)
list of statistical results. It should be used close to the end of
a statistical function. See examples for a structure with two statistical results and two groups.
(character
)
custom modification of statistical values.
(character
)
statistical methods to return defaults for.
(named vector
)
custom formats to use instead of defaults. Can be a character vector with
values from formatters::list_valid_format_labels()
or custom format functions. Defaults to NULL
for any rows
with no value is provided.
(named list
of character
or NULL
)
named list where the name of each element is a
statistic from stats
and each element is the levels of a factor
or character
variable (or variable name),
each corresponding to a single row, for which the named statistic should be calculated for. If a statistic is only
calculated once (one row), the element can be either NULL
or the name of the statistic. Each list element will be
flattened such that the names of the list elements returned by the function have the format statistic.level
(or
just statistic
for statistics calculated for a single row). Defaults to NULL
.
(list
or vector
)
defaults to use to fill in missing values if no user input is given.
Must be of the same type as the values that are being filled in (e.g. indentation must be integers).
(named character
)
custom labels to use instead of defaults. If no value is provided, the
variable level (if rows correspond to levels of a variable) or statistic name will be used as label.
(named list
)
if labels_in = NULL
, then this will be used instead. It is a list
of values defined in statistical functions as default labels. Values are ignored if labels_in
is provided or ""
values are provided.
(named integer
)
custom row indent modifiers to use instead of defaults. Defaults to 0L
for
all values.
Deprecation cycle started. See the
levels_per_stats
parameter
for details.
(string
)"numeric"
or "counts"
.
(flag
)
same as the add_pval
argument in get_stats()
.
get_stats()
returns a character
vector of statistical methods.
get_stat_names()
returns a named list of character
vectors, indicating the names of
statistical outputs.
get_formats_from_stats()
returns a named list of formats as strings or functions.
get_labels_from_stats()
returns a named list of labels as strings.
get_indents_from_stats()
returns a named list of indentation modifiers as integers.
summary_formats()
returns a named vector
of default statistic formats for the given data type.
summary_labels
returns a named vector
of default statistic labels for the given data type.
Current choices for type
are counts
and numeric
for analyze_vars()
and affect get_stats()
.
summary_*
quick get functions for labels or formats uses get_stats
and get_labels_from_stats
or
get_formats_from_stats
respectively to retrieve relevant information.
get_stats()
: Get statistics available for a given method
group (analyze function). To check available defaults see tern::tern_default_stats
list.
get_stat_names()
: Get statistical names available for a given method
group (analyze function). Please use the s_*
functions to get the statistical names.
get_formats_from_stats()
: Get formats corresponding to a list of statistics.
To check available defaults see list tern::tern_default_formats
.
get_labels_from_stats()
: Get labels corresponding to a list of statistics.
To check for available defaults see list tern::tern_default_labels
.
get_indents_from_stats()
: Get row indent modifiers corresponding to a list of statistics/rows.
tern_default_stats
: Named list of available statistics by method group for tern
.
tern_default_formats
: Named vector of default formats for tern
.
tern_default_labels
: Named character
vector of default labels for tern
.
summary_formats()
: Quick function to retrieve default formats for summary statistics:
analyze_vars()
and analyze_vars_in_cols()
principally.
summary_labels()
: Quick function to retrieve default labels for summary statistics.
Returns labels of descriptive statistics which are understood by rtables
. Similar to summary_formats
.
These defaults are experimental because we use the names of functions to retrieve the default statistics. This should be generalized in groups of methods according to more reasonable groupings.
Formats in tern
and rtables
can be functions that take in the table cell value and
return a string. This is well documented in vignette("custom_appearance", package = "rtables")
.
# analyze_vars is numeric
num_stats <- get_stats("analyze_vars_numeric") # also the default
# Other type
cnt_stats <- get_stats("analyze_vars_counts")
# Weirdly taking the pval from count_occurrences
only_pval <- get_stats("count_occurrences", add_pval = TRUE, stats_in = "pval")
# All count_occurrences
all_cnt_occ <- get_stats("count_occurrences")
# Multiple
get_stats(c("count_occurrences", "analyze_vars_counts"))
#> [1] "count" "count_fraction"
#> [3] "count_fraction_fixed_dp" "fraction"
#> [5] "n" "n_blq"
stat_results <- list(
"n" = list("M" = 1, "F" = 2),
"count_fraction" = list("M" = c(1, 0.2), "F" = c(2, 0.1))
)
get_stat_names(stat_results)
#> $n
#> [1] "M" "F"
#>
#> $count_fraction
#> [1] "M" "F"
#>
get_stat_names(stat_results, list("n" = "argh"))
#> $n
#> [1] "argh"
#>
#> $count_fraction
#> [1] "M" "F"
#>
# Defaults formats
get_formats_from_stats(num_stats)
#> $n
#> [1] "xx."
#>
#> $sum
#> [1] "xx.x"
#>
#> $mean
#> [1] "xx.x"
#>
#> $sd
#> [1] "xx.x"
#>
#> $se
#> [1] "xx.x"
#>
#> $mean_sd
#> [1] "xx.x (xx.x)"
#>
#> $mean_se
#> [1] "xx.x (xx.x)"
#>
#> $mean_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_sei
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_sdi
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_pval
#> [1] "x.xxxx | (<0.0001)"
#>
#> $median
#> [1] "xx.x"
#>
#> $mad
#> [1] "xx.x"
#>
#> $median_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $quantiles
#> [1] "xx.x - xx.x"
#>
#> $iqr
#> [1] "xx.x"
#>
#> $range
#> [1] "xx.x - xx.x"
#>
#> $min
#> [1] "xx.x"
#>
#> $max
#> [1] "xx.x"
#>
#> $median_range
#> [1] "xx.x (xx.x - xx.x)"
#>
#> $cv
#> [1] "xx.x"
#>
#> $geom_mean
#> [1] "xx.x"
#>
#> $geom_sd
#> [1] "xx.x"
#>
#> $geom_mean_sd
#> [1] "xx.x (xx.x)"
#>
#> $geom_mean_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $geom_cv
#> [1] "xx.x"
#>
#> $median_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
#> $mean_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
#> $geom_mean_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
get_formats_from_stats(cnt_stats)
#> $n
#> [1] "xx."
#>
#> $count
#> [1] "xx."
#>
#> $count_fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else {
#> paste0(x[1], " (", round(x[2] * 100, 1), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c08948>
#> <environment: namespace:tern>
#>
#> $count_fraction_fixed_dp
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else if (.is_equal_float(x[2], 1)) {
#> sprintf("%d (100%%)", x[1])
#> }
#> else {
#> sprintf("%d (%.1f%%)", x[1], x[2] * 100)
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c0b160>
#> <environment: namespace:tern>
#>
#> $fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> checkmate::assert_vector(x)
#> checkmate::assert_count(x["num"])
#> checkmate::assert_count(x["denom"])
#> result <- if (x["num"] == 0) {
#> paste0(x["num"], "/", x["denom"])
#> }
#> else {
#> paste0(x["num"], "/", x["denom"], " (", sprintf("%.1f",
#> round(x["num"]/x["denom"] * 100, 1)), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c09838>
#> <environment: namespace:tern>
#>
#> $n_blq
#> [1] "xx."
#>
get_formats_from_stats(only_pval)
#> $pval
#> [1] "x.xxxx | (<0.0001)"
#>
get_formats_from_stats(all_cnt_occ)
#> $count
#> [1] "xx."
#>
#> $count_fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else {
#> paste0(x[1], " (", round(x[2] * 100, 1), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c08948>
#> <environment: namespace:tern>
#>
#> $count_fraction_fixed_dp
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else if (.is_equal_float(x[2], 1)) {
#> sprintf("%d (100%%)", x[1])
#> }
#> else {
#> sprintf("%d (%.1f%%)", x[1], x[2] * 100)
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c0b160>
#> <environment: namespace:tern>
#>
#> $fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> checkmate::assert_vector(x)
#> checkmate::assert_count(x["num"])
#> checkmate::assert_count(x["denom"])
#> result <- if (x["num"] == 0) {
#> paste0(x["num"], "/", x["denom"])
#> }
#> else {
#> paste0(x["num"], "/", x["denom"], " (", sprintf("%.1f",
#> round(x["num"]/x["denom"] * 100, 1)), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c09838>
#> <environment: namespace:tern>
#>
# Addition of customs
get_formats_from_stats(all_cnt_occ, formats_in = c("fraction" = c("xx")))
#> $count
#> [1] "xx."
#>
#> $count_fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else {
#> paste0(x[1], " (", round(x[2] * 100, 1), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c08948>
#> <environment: namespace:tern>
#>
#> $count_fraction_fixed_dp
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else if (.is_equal_float(x[2], 1)) {
#> sprintf("%d (100%%)", x[1])
#> }
#> else {
#> sprintf("%d (%.1f%%)", x[1], x[2] * 100)
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c0b160>
#> <environment: namespace:tern>
#>
#> $fraction
#> [1] "xx"
#>
get_formats_from_stats(all_cnt_occ, formats_in = list("fraction" = c("xx.xx", "xx")))
#> Warning: longer object length is not a multiple of shorter object length
#> Warning: longer object length is not a multiple of shorter object length
#> $count
#> [1] "xx."
#>
#> $count_fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else {
#> paste0(x[1], " (", round(x[2] * 100, 1), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c08948>
#> <environment: namespace:tern>
#>
#> $count_fraction_fixed_dp
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else if (.is_equal_float(x[2], 1)) {
#> sprintf("%d (100%%)", x[1])
#> }
#> else {
#> sprintf("%d (%.1f%%)", x[1], x[2] * 100)
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c0b160>
#> <environment: namespace:tern>
#>
#> $fraction
#> [1] "xx.xx" "xx"
#>
#> [[5]]
#> NULL
#>
# Defaults labels
get_labels_from_stats(num_stats)
#> $n
#> [1] "n"
#>
#> $sum
#> [1] "Sum"
#>
#> $mean
#> [1] "Mean"
#>
#> $sd
#> [1] "SD"
#>
#> $se
#> [1] "SE"
#>
#> $mean_sd
#> [1] "Mean (SD)"
#>
#> $mean_se
#> [1] "Mean (SE)"
#>
#> $mean_ci
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> [1] "Median"
#>
#> $mad
#> [1] "Median Absolute Deviation"
#>
#> $median_ci
#> [1] "Median 95% CI"
#>
#> $quantiles
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> [1] "IQR"
#>
#> $range
#> [1] "Min - Max"
#>
#> $min
#> [1] "Minimum"
#>
#> $max
#> [1] "Maximum"
#>
#> $median_range
#> [1] "Median (Min - Max)"
#>
#> $cv
#> [1] "CV (%)"
#>
#> $geom_mean
#> [1] "Geometric Mean"
#>
#> $geom_sd
#> [1] "Geometric SD"
#>
#> $geom_mean_sd
#> [1] "Geometric Mean (SD)"
#>
#> $geom_mean_ci
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> [1] "CV % Geometric Mean"
#>
#> $median_ci_3d
#> [1] "Median (95% CI)"
#>
#> $mean_ci_3d
#> [1] "Mean (95% CI)"
#>
#> $geom_mean_ci_3d
#> [1] "Geometric Mean (95% CI)"
#>
get_labels_from_stats(cnt_stats)
#> $n
#> [1] "n"
#>
#> $count
#> [1] "count"
#>
#> $count_fraction
#> [1] "count_fraction"
#>
#> $count_fraction_fixed_dp
#> [1] "count_fraction_fixed_dp"
#>
#> $fraction
#> [1] "fraction"
#>
#> $n_blq
#> [1] "n_blq"
#>
get_labels_from_stats(only_pval)
#> $pval
#> [1] "p-value (t-test)"
#>
get_labels_from_stats(all_cnt_occ)
#> $count
#> [1] "count"
#>
#> $count_fraction
#> [1] "count_fraction"
#>
#> $count_fraction_fixed_dp
#> [1] "count_fraction_fixed_dp"
#>
#> $fraction
#> [1] "fraction"
#>
# Addition of customs
get_labels_from_stats(all_cnt_occ, labels_in = c("fraction" = "Fraction"))
#> $count
#> [1] "count"
#>
#> $count_fraction
#> [1] "count_fraction"
#>
#> $count_fraction_fixed_dp
#> [1] "count_fraction_fixed_dp"
#>
#> $fraction
#> [1] "Fraction"
#>
get_labels_from_stats(all_cnt_occ, labels_in = list("fraction" = c("Some more fractions")))
#> $count
#> [1] "count"
#>
#> $count_fraction
#> [1] "count_fraction"
#>
#> $count_fraction_fixed_dp
#> [1] "count_fraction_fixed_dp"
#>
#> $fraction
#> [1] "Some more fractions"
#>
get_indents_from_stats(all_cnt_occ, indents_in = 3L)
#> [1] 3 3 3 3
get_indents_from_stats(all_cnt_occ, indents_in = list(count = 2L, count_fraction = 5L))
#> $count
#> [1] 2
#>
#> $count_fraction
#> [1] 5
#>
#> $count_fraction_fixed_dp
#> [1] 0
#>
#> $fraction
#> [1] 0
#>
get_indents_from_stats(
all_cnt_occ,
indents_in = list(a = 2L, count.a = 1L, count.b = 5L)
)
#> $count
#> [1] 0
#>
#> $count_fraction
#> [1] 0
#>
#> $count_fraction_fixed_dp
#> [1] 0
#>
#> $fraction
#> [1] 0
#>
summary_formats()
#> $n
#> [1] "xx."
#>
#> $sum
#> [1] "xx.x"
#>
#> $mean
#> [1] "xx.x"
#>
#> $sd
#> [1] "xx.x"
#>
#> $se
#> [1] "xx.x"
#>
#> $mean_sd
#> [1] "xx.x (xx.x)"
#>
#> $mean_se
#> [1] "xx.x (xx.x)"
#>
#> $mean_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_sei
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_sdi
#> [1] "(xx.xx, xx.xx)"
#>
#> $mean_pval
#> [1] "x.xxxx | (<0.0001)"
#>
#> $median
#> [1] "xx.x"
#>
#> $mad
#> [1] "xx.x"
#>
#> $median_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $quantiles
#> [1] "xx.x - xx.x"
#>
#> $iqr
#> [1] "xx.x"
#>
#> $range
#> [1] "xx.x - xx.x"
#>
#> $min
#> [1] "xx.x"
#>
#> $max
#> [1] "xx.x"
#>
#> $median_range
#> [1] "xx.x (xx.x - xx.x)"
#>
#> $cv
#> [1] "xx.x"
#>
#> $geom_mean
#> [1] "xx.x"
#>
#> $geom_sd
#> [1] "xx.x"
#>
#> $geom_mean_sd
#> [1] "xx.x (xx.x)"
#>
#> $geom_mean_ci
#> [1] "(xx.xx, xx.xx)"
#>
#> $geom_cv
#> [1] "xx.x"
#>
#> $median_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
#> $mean_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
#> $geom_mean_ci_3d
#> [1] "xx.xx (xx.xx - xx.xx)"
#>
summary_formats(type = "counts", include_pval = TRUE)
#> $n
#> [1] "xx."
#>
#> $count
#> [1] "xx."
#>
#> $count_fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else {
#> paste0(x[1], " (", round(x[2] * 100, 1), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c08948>
#> <environment: namespace:tern>
#>
#> $count_fraction_fixed_dp
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> if (any(is.na(x))) {
#> return("NA")
#> }
#> checkmate::assert_vector(x)
#> checkmate::assert_integerish(x[1])
#> assert_proportion_value(x[2], include_boundaries = TRUE)
#> result <- if (x[1] == 0) {
#> "0"
#> }
#> else if (.is_equal_float(x[2], 1)) {
#> sprintf("%d (100%%)", x[1])
#> }
#> else {
#> sprintf("%d (%.1f%%)", x[1], x[2] * 100)
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c0b160>
#> <environment: namespace:tern>
#>
#> $fraction
#> function (x, ...)
#> {
#> attr(x, "label") <- NULL
#> checkmate::assert_vector(x)
#> checkmate::assert_count(x["num"])
#> checkmate::assert_count(x["denom"])
#> result <- if (x["num"] == 0) {
#> paste0(x["num"], "/", x["denom"])
#> }
#> else {
#> paste0(x["num"], "/", x["denom"], " (", sprintf("%.1f",
#> round(x["num"]/x["denom"] * 100, 1)), "%)")
#> }
#> return(result)
#> }
#> <bytecode: 0x55b406c09838>
#> <environment: namespace:tern>
#>
#> $n_blq
#> [1] "xx."
#>
#> $pval_counts
#> [1] "x.xxxx | (<0.0001)"
#>
summary_labels()
#> $n
#> [1] "n"
#>
#> $sum
#> [1] "Sum"
#>
#> $mean
#> [1] "Mean"
#>
#> $sd
#> [1] "SD"
#>
#> $se
#> [1] "SE"
#>
#> $mean_sd
#> [1] "Mean (SD)"
#>
#> $mean_se
#> [1] "Mean (SE)"
#>
#> $mean_ci
#> [1] "Mean 95% CI"
#>
#> $mean_sei
#> [1] "Mean -/+ 1xSE"
#>
#> $mean_sdi
#> [1] "Mean -/+ 1xSD"
#>
#> $mean_pval
#> [1] "Mean p-value (H0: mean = 0)"
#>
#> $median
#> [1] "Median"
#>
#> $mad
#> [1] "Median Absolute Deviation"
#>
#> $median_ci
#> [1] "Median 95% CI"
#>
#> $quantiles
#> [1] "25% and 75%-ile"
#>
#> $iqr
#> [1] "IQR"
#>
#> $range
#> [1] "Min - Max"
#>
#> $min
#> [1] "Minimum"
#>
#> $max
#> [1] "Maximum"
#>
#> $median_range
#> [1] "Median (Min - Max)"
#>
#> $cv
#> [1] "CV (%)"
#>
#> $geom_mean
#> [1] "Geometric Mean"
#>
#> $geom_sd
#> [1] "Geometric SD"
#>
#> $geom_mean_sd
#> [1] "Geometric Mean (SD)"
#>
#> $geom_mean_ci
#> [1] "Geometric Mean 95% CI"
#>
#> $geom_cv
#> [1] "CV % Geometric Mean"
#>
#> $median_ci_3d
#> [1] "Median (95% CI)"
#>
#> $mean_ci_3d
#> [1] "Mean (95% CI)"
#>
#> $geom_mean_ci_3d
#> [1] "Geometric Mean (95% CI)"
#>
summary_labels(type = "counts", include_pval = TRUE)
#> $n
#> [1] "n"
#>
#> $count
#> [1] "count"
#>
#> $count_fraction
#> [1] "count_fraction"
#>
#> $count_fraction_fixed_dp
#> [1] "count_fraction_fixed_dp"
#>
#> $fraction
#> [1] "fraction"
#>
#> $n_blq
#> [1] "n_blq"
#>
#> $pval_counts
#> [1] "p-value (chi-squared test)"
#>