The analyze function coxph_pairwise()
creates a layout element to analyze a pairwise Cox-PH model.
This function can return statistics including p-value, hazard ratio (HR), and HR confidence intervals from both
stratified and unstratified Cox-PH models. The variable(s) to be analyzed is specified via the vars
argument and
any stratification factors via the strata
argument.
coxph_pairwise(
lyt,
vars,
strata = NULL,
control = control_coxph(),
na_str = default_na_str(),
nested = TRUE,
...,
var_labels = "CoxPH",
show_labels = "visible",
table_names = vars,
.stats = c("pvalue", "hr", "hr_ci"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_coxph_pairwise(
df,
.ref_group,
.in_ref_col,
.var,
is_event,
strata = NULL,
strat = lifecycle::deprecated(),
control = control_coxph(),
...
)
a_coxph_pairwise(
df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
(PreDataTableLayouts
)
layout that analyses will be added to.
(character
)
variable names for the primary analysis variable to be iterated over.
(character
or NULL
)
variable names indicating stratification factors.
(list
)
parameters for comparison details, specified by using the helper function
control_coxph()
. Some possible parameter options are:
pval_method
(string
)
p-value method for testing the null hypothesis that hazard ratio = 1. Default
method is "log-rank"
which comes from survival::survdiff()
, can also be set to "wald"
or "likelihood"
(from survival::coxph()
).
ties
(string
)
specifying the method for tie handling. Default is "efron"
,
can also be set to "breslow"
or "exact"
. See more in survival::coxph()
.
conf_level
(proportion
)
confidence level of the interval for HR.
(string
)
string used to replace all NA
or empty values in the output.
(flag
)
whether this layout instruction should be applied within the existing layout structure _if
possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split.
underneath analyses, which is not allowed.
additional arguments for the lower level functions.
(character
)
variable labels.
(string
)
label visibility: one of "default", "visible" and "hidden".
(character
)
this can be customized in the case that the same vars
are analyzed multiple
times, to avoid warnings from rtables
.
(character
)
statistics to select for the table.
Options are: 'pvalue', 'hr', 'hr_ci', 'n_tot', 'n_tot_events'
(character
)
names of the statistics that are passed directly to name single statistics
(.stats
). This option is visible when producing rtables::as_result_df()
with make_ard = TRUE
.
(named character
or list
)
formats for the statistics. See Details in analyze_vars
for more
information on the "auto"
setting.
(named character
)
labels for the statistics (without indent).
(named integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the
unmodified default behavior. Can be negative.
(data.frame
)
data set containing all analysis variables.
(data.frame
or vector
)
the data corresponding to the reference group.
(flag
)TRUE
when working with the reference level, FALSE
otherwise.
(string
)
single variable name that is passed by rtables
when requested
by a statistics function.
(flag
)TRUE
if event, FALSE
if time to event is censored.
coxph_pairwise()
returns a layout object suitable for passing to further layouting functions,
or to rtables::build_table()
. Adding this function to an rtable
layout will add formatted rows containing
the statistics from s_coxph_pairwise()
to the table layout.
s_coxph_pairwise()
returns the statistics:
pvalue
: p-value to test the null hypothesis that hazard ratio = 1.
hr
: Hazard ratio.
hr_ci
: Confidence interval for hazard ratio.
n_tot
: Total number of observations.
n_tot_events
: Total number of events.
a_coxph_pairwise()
returns the corresponding list with formatted rtables::CellValue()
.
coxph_pairwise()
: Layout-creating function which can take statistics function arguments
and additional format arguments. This function is a wrapper for rtables::analyze()
.
s_coxph_pairwise()
: Statistics function which analyzes HR, CIs of HR, and p-value of a Cox-PH model.
a_coxph_pairwise()
: Formatted analysis function which is used as afun
in coxph_pairwise()
.
library(dplyr)
adtte_f <- tern_ex_adtte %>%
filter(PARAMCD == "OS") %>%
mutate(is_event = CNSR == 0)
df <- adtte_f %>% filter(ARMCD == "ARM A")
df_ref_group <- adtte_f %>% filter(ARMCD == "ARM B")
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Unstratified Analysis"
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ————————————————————————————————————————————————————————————
#> Unstratified Analysis
#> p-value (log-rank) 0.0905 0.0086
#> Hazard Ratio 1.41 1.81
#> 95% CI (0.95, 2.09) (1.16, 2.84)
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Stratified Analysis",
strata = "SEX",
control = control_coxph(pval_method = "wald")
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ——————————————————————————————————————————————————————————
#> Stratified Analysis
#> p-value (wald) 0.0784 0.0066
#> Hazard Ratio 1.44 1.89
#> 95% CI (0.96, 2.15) (1.19, 2.98)