Title
xpose.bootgam(
object,
n = n,
id = object@Prefs@Xvardef$id,
oid = "OID",
seed = NULL,
parnam = xvardef("parms", object)[1],
covnams = xvardef("covariates", object),
conv.value = object@Prefs@Bootgam.prefs$conv.value,
check.interval = as.numeric(object@Prefs@Bootgam.prefs$check.interval),
start.check = as.numeric(object@Prefs@Bootgam.prefs$start.check),
algo = object@Prefs@Bootgam.prefs$algo,
start.mod = object@Prefs@Bootgam.prefs$start.mod,
liif = as.numeric(object@Prefs@Bootgam.prefs$liif),
ljif.conv = as.numeric(object@Prefs@Bootgam.prefs$ljif.conv),
excluded.ids = as.numeric(object@Prefs@Bootgam.prefs$excluded.ids),
...
)An xpose.data object.
number of bootstrap iterations
column name of id
create a new column with the original ID data
random seed
ONE (and only one) model parameter name.
Covariate names to test on parameter.
Convergence value
How often to check the convergence
When to start checking
Which algorithm to use
which start model
The liif value
The convergence value for the liif
ID values to exclude.
Used to pass arguments to more basic functions.
a list of results from the bootstrap of the GAM.
Other GAM functions:
GAM_summary_and_plot,
xp.get.disp(),
xp.scope3(),
xpose.gam(),
xpose4-package
if (FALSE) { # \dontrun{
## filter out occasion as a covariate as only one value
all_covs <- xvardef("covariates",simpraz.xpdb)
some_covs <- all_covs[!(all_covs %in% "OCC") ]
## here only running n=5 replicates to see that things work
## use something like n=100 for resonable results
boot_gam_obj <- xpose.bootgam(simpraz.xpdb,5,parnam="KA",covnams=some_covs,seed=1234)
} # }