summary.GP.Rd
Prints the summary of a class GP
object estimated by GP_fit
# S3 method for class 'GP'
summary(object, ...)
a class GP
object estimated by GP_fit
for compatibility with generic method summary
prints the summary of the GP object (object
), by calling
print.GP
## 1D example
n <- 5
d <- 1
computer_simulator <- function(x){
x <- 2 * x + 0.5
y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
return(y)
}
set.seed(3)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
summary(GPmodel)
#>
#> Number Of Observations: n = 5
#> Input Dimensions: d = 1
#>
#> Correlation: Exponential (power = 1.95)
#> Correlation Parameters:
#> beta_hat
#> [1] 0.6433793
#>
#> sigma^2_hat: [1] 7.262407
#>
#> delta_lb(beta_hat): [1] 0
#>
#> nugget threshold parameter: 20
#>
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 = 4*x[, 1] - 2
x2 = 4*x[, 2] - 2
t1 = 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 +
6*x1*x2 + 3*x2^2)
t2 = 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 -
36*x1*x2 + 27*x2^2)
y = t1*t2
return(y)
}
n <- 10
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
#> Warning: NaNs produced
#> Error in GP_deviance(beta = row, X = X, Y = Y, nug_thres = nug_thres, corr = corr): Infinite values of the Deviance Function,
#> unable to find optimum parameters
summary(GPmodel)
#>
#> Number Of Observations: n = 5
#> Input Dimensions: d = 1
#>
#> Correlation: Exponential (power = 1.95)
#> Correlation Parameters:
#> beta_hat
#> [1] 0.6433793
#>
#> sigma^2_hat: [1] 7.262407
#>
#> delta_lb(beta_hat): [1] 0
#>
#> nugget threshold parameter: 20
#>