colSums-methods.RdForm row and column sums and means for
objects, for sparseMatrix the result may
optionally be sparse (sparseVector), too.
Row or column names are kept respectively as for base matrices
and colSums methods, when the result is
numeric vector.
colSums(x, na.rm = FALSE, dims = 1L, ...)
rowSums(x, na.rm = FALSE, dims = 1L, ...)
colMeans(x, na.rm = FALSE, dims = 1L, ...)
rowMeans(x, na.rm = FALSE, dims = 1L, ...)
# S4 method for class 'CsparseMatrix'
colSums (x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
# S4 method for class 'CsparseMatrix'
rowSums (x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
# S4 method for class 'CsparseMatrix'
colMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
# S4 method for class 'CsparseMatrix'
rowMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)a Matrix, i.e., inheriting from Matrix.
logical. Should missing values (including NaN)
be omitted from the calculations?
completely ignored by the Matrix methods.
potentially further arguments, for method <->
generic compatibility.
logical indicating if the result should be sparse,
i.e., inheriting from class sparseVector. Only
applicable when x is inheriting from a
sparseMatrix class.
returns a numeric vector if sparseResult is FALSE as per
default. Otherwise, returns a sparseVector.
dimnames(x) are only kept (as names(v))
when the resulting v is numeric, since
sparseVectors do not have names.
colSums and the
sparseVector classes.
(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
#> 7 x 8 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 1 . . . . . . .
#> [2,] . 1 . . . . . .
#> [3,] . . 1 1 1 1 . .
#> [4,] . . 2 2 2 2 . .
#> [5,] . . 3 3 3 3 . .
#> [6,] . . . . . . 3 .
#> [7,] . . . . . . . 2
colSums(M)
#> [1] 1 1 6 6 6 6 3 2
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
#> [1] 70 80
length(MM@x) # 160, but many are '0' ; drop those:
#> [1] 160
MM <- drop0(MM)
length(MM@x) # 32
#> [1] 32
cm <- colSums(MM)
(scm <- colSums(MM, sparseResult = TRUE))
#> sparse vector (nnz/length = 16/80) of class "dsparseVector"
#> [1] . . . . . . . . . . . . . . . . 10 10 60 60 60 60 30 20 .
#> [26] . . . . . . . 2 2 12 12 12 12 6 4 . . . . . . . . . .
#> [51] . . . . . . . . . . . . . . . . . . . . . . . . .
#> [76] . . . . .
stopifnot(is(scm, "sparseVector"),
identical(cm, as.numeric(scm)))
rowSums (MM, sparseResult = TRUE) # 14 of 70 are not zero
#> sparse vector (nnz/length = 14/70) of class "dsparseVector"
#> [1] . . . . . . . . . . . . . . 10 10 40 80 120
#> [20] 30 20 . . . . . . . 2 2 8 16 24 6 4 . . .
#> [39] . . . . . . . . . . . . . . . . . . .
#> [58] . . . . . . . . . . . . .
colMeans(MM, sparseResult = TRUE) # 16 of 80 are not zero
#> sparse vector (nnz/length = 16/80) of class "dsparseVector"
#> [1] . . . . . .
#> [7] . . . . . .
#> [13] . . . . 0.14285714 0.14285714
#> [19] 0.85714286 0.85714286 0.85714286 0.85714286 0.42857143 0.28571429
#> [25] . . . . . .
#> [31] . . 0.02857143 0.02857143 0.17142857 0.17142857
#> [37] 0.17142857 0.17142857 0.08571429 0.05714286 . .
#> [43] . . . . . .
#> [49] . . . . . .
#> [55] . . . . . .
#> [61] . . . . . .
#> [67] . . . . . .
#> [73] . . . . . .
#> [79] . .
## Since we have no 'NA's, these two are equivalent :
stopifnot(identical(rowMeans(MM, sparseResult = TRUE),
rowMeans(MM, sparseResult = TRUE, na.rm = TRUE)),
rowMeans(Diagonal(16)) == 1/16,
colSums(Diagonal(7)) == 1)
## dimnames(x) --> names( <value> ) :
dimnames(M) <- list(paste0("r", 1:7), paste0("V",1:8))
M
#> 7 x 8 sparse Matrix of class "dgCMatrix"
#> V1 V2 V3 V4 V5 V6 V7 V8
#> r1 1 . . . . . . .
#> r2 . 1 . . . . . .
#> r3 . . 1 1 1 1 . .
#> r4 . . 2 2 2 2 . .
#> r5 . . 3 3 3 3 . .
#> r6 . . . . . . 3 .
#> r7 . . . . . . . 2
colSums(M)
#> V1 V2 V3 V4 V5 V6 V7 V8
#> 1 1 6 6 6 6 3 2
rowMeans(M)
#> r1 r2 r3 r4 r5 r6 r7
#> 0.125 0.125 0.500 1.000 1.500 0.375 0.250
## Assertions :
stopifnot(exprs = {
all.equal(colSums(M),
structure(c(1,1,6,6,6,6,3,2), names = colnames(M)))
all.equal(rowMeans(M),
structure(c(1,1,4,8,12,3,2)/8, names = paste0("r", 1:7)))
})