drop0.RdDeletes “non-structural” zeros (i.e., zeros stored explicitly, in memory) from a sparse matrix and returns the result.
drop0(x, tol = 0, is.Csparse = NA, give.Csparse = TRUE)a Matrix, typically inheriting
from virtual class sparseMatrix.
denseMatrix and traditional vectors and
matrices are coerced to CsparseMatrix,
with zeros dropped automatically, hence users passing such
x should consider as(x, "CsparseMatrix") instead,
notably in the tol = 0 case.
a non-negative number. If x is numeric,
then entries less than or equal to tol in absolute value
are deleted.
a logical used only if give.Csparse
is TRUE, indicating if x already inherits from
virtual class CsparseMatrix, in which
case coercion is not attempted, permitting some (typically
small) speed-up.
a logical indicating if the result must
inherit from virtual class CsparseMatrix.
If FALSE and x inherits from
RsparseMatrix,
TsparseMatrix, or
indMatrix,
then the result preserves the class of x.
The default value is TRUE only for backwards compatibility.
A sparseMatrix, the result of deleting
non-structural zeros from x, possibly after coercion.
drop0 is sometimes called in conjunction with
zapsmall, e.g., when dealing with sparse
matrix products; see the example.
Function sparseMatrix, for constructing objects
inheriting from virtual class sparseMatrix;
nnzero.
(m <- sparseMatrix(i = 1:8, j = 2:9, x = c(0:2, 3:-1),
dims = c(10L, 20L)))
#> 10 x 20 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 0 . . . . . . . . . . . . . . . . . .
#> [2,] . . 1 . . . . . . . . . . . . . . . . .
#> [3,] . . . 2 . . . . . . . . . . . . . . . .
#> [4,] . . . . 3 . . . . . . . . . . . . . . .
#> [5,] . . . . . 2 . . . . . . . . . . . . . .
#> [6,] . . . . . . 1 . . . . . . . . . . . . .
#> [7,] . . . . . . . 0 . . . . . . . . . . . .
#> [8,] . . . . . . . . -1 . . . . . . . . . . .
#> [9,] . . . . . . . . . . . . . . . . . . . .
#> [10,] . . . . . . . . . . . . . . . . . . . .
drop0(m)
#> 10 x 20 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . . . . . . . . . . . . . . . . . . . .
#> [2,] . . 1 . . . . . . . . . . . . . . . . .
#> [3,] . . . 2 . . . . . . . . . . . . . . . .
#> [4,] . . . . 3 . . . . . . . . . . . . . . .
#> [5,] . . . . . 2 . . . . . . . . . . . . . .
#> [6,] . . . . . . 1 . . . . . . . . . . . . .
#> [7,] . . . . . . . . . . . . . . . . . . . .
#> [8,] . . . . . . . . -1 . . . . . . . . . . .
#> [9,] . . . . . . . . . . . . . . . . . . . .
#> [10,] . . . . . . . . . . . . . . . . . . . .
## A larger example:
t5 <- new("dtCMatrix", Dim = c(5L, 5L), uplo = "L",
x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L),
p = c(0L, 3L, 5L, 7:9))
TT <- kronecker(t5, kronecker(kronecker(t5, t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 ( == 625 + 72 )
#> [1] 697
I.0 <- drop0(zapsmall(I.))
## which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)), nnzero(I..) == 625)