binom2.rhoUC.RdDensity and random generation for a bivariate probit model. The correlation parameter rho is the measure of dependency.
rbinom2.rho(n, mu1, mu2 = if (exchangeable) mu1 else
stop("'mu2' not specified"), rho = 0,
exchangeable = FALSE, twoCols = TRUE,
colnames = if (twoCols) c("y1","y2") else
c("00", "01", "10", "11"), ErrorCheck = TRUE)
dbinom2.rho(mu1, mu2 = if (exchangeable) mu1 else
stop("'mu2' not specified"), rho = 0, exchangeable = FALSE,
colnames = c("00", "01", "10", "11"), ErrorCheck = TRUE)number of observations.
Same as in runif.
The arguments mu1, mu2, rho are recycled
to this value.
The marginal probabilities.
Only mu1 is needed if exchangeable = TRUE.
Values should be between 0 and 1.
The correlation parameter. Must be numeric and lie between \(-1\) and \(1\). The default value of zero means the responses are uncorrelated.
Logical. If TRUE, the two marginal probabilities are
constrained to be equal.
Logical.
If TRUE, then a \(n\) \(\times\) \(2\) matrix of 1s
and 0s is returned.
If FALSE, then a \(n\) \(\times\) \(4\) matrix of 1s
and 0s is returned.
The dimnames argument of
matrix is assigned
list(NULL, colnames).
Logical. Do some error checking of the input parameters?
The function rbinom2.rho generates data coming from a
bivariate probit model.
The data might be fitted with the VGAM family function
binom2.rho.
The function dbinom2.rho does not really compute the
density (because that does not make sense here) but rather
returns the four joint probabilities.
The function rbinom2.rho returns
either a 2 or 4 column matrix of 1s and 0s, depending on the
argument twoCols.
The function dbinom2.rho returns
a 4 column matrix of joint probabilities; each row adds up
to unity.
(myrho <- rhobitlink(2, inverse = TRUE)) # Example 1
#> [1] 0.7615942
nn <- 2000
ymat <- rbinom2.rho(nn, mu1 = 0.8, rho = myrho, exch = TRUE)
(mytab <- table(ymat[, 1], ymat[, 2], dnn = c("Y1", "Y2")))
#> Y2
#> Y1 0 1
#> 0 232 147
#> 1 155 1466
fit <- vglm(ymat ~ 1, binom2.rho(exch = TRUE))
coef(fit, matrix = TRUE)
#> probitlink(mu1) probitlink(mu2) rhobitlink(rho)
#> (Intercept) 0.872382 0.872382 1.998258
bdata <- data.frame(x2 = sort(runif(nn))) # Example 2
bdata <- transform(bdata, mu1 = probitlink(-2+4*x2, inv = TRUE),
mu2 = probitlink(-1+3*x2, inv = TRUE))
dmat <- with(bdata, dbinom2.rho(mu1, mu2, myrho))
ymat <- with(bdata, rbinom2.rho(nn, mu1, mu2, myrho))
fit2 <- vglm(ymat ~ x2, binom2.rho, data = bdata)
coef(fit2, matrix = TRUE)
#> probitlink(mu1) probitlink(mu2) rhobitlink(rho)
#> (Intercept) -1.997620 -1.055676 2.120919
#> x2 3.983245 3.011416 0.000000
if (FALSE) matplot(with(bdata, x2), dmat, lty = 1:4, col = 1:4,
type = "l", main = "Joint probabilities",
ylim = 0:1, lwd = 2, ylab = "Probability")
legend(x = 0.25, y = 0.9, lty = 1:4, col = 1:4, lwd = 2,
legend = c("1 = (y1=0, y2=0)", "2 = (y1=0, y2=1)",
"3 = (y1=1, y2=0)", "4 = (y1=1, y2=1)")) # \dontrun{}
#> Error in (function (s, units = "user", cex = NULL, font = NULL, vfont = NULL, ...) { if (!is.null(vfont)) vfont <- c(typeface = pmatch(vfont[1L], Hershey$typeface), fontindex = pmatch(vfont[2L], Hershey$fontindex)) .External.graphics(C_strWidth, as.graphicsAnnot(s), pmatch(units, c("user", "figure", "inches")), cex, font, vfont, ...)})(dots[[1L]][[1L]], cex = dots[[2L]][[1L]], font = dots[[3L]][[1L]], units = "user"): plot.new has not been called yet