double.cens.normal.RdMaximum likelihood estimation of the two parameters of a univariate normal distribution when there is double censoring.
double.cens.normal(r1 = 0, r2 = 0, lmu = "identitylink", lsd =
"loglink", imu = NULL, isd = NULL, zero = "sd")Integers. Number of smallest and largest values censored, respectively.
Parameter link functions applied to the
mean and standard deviation.
See Links for more choices.
See CommonVGAMffArguments for more information.
This family function uses the Fisher information matrix given
in Harter and Moore (1966). The matrix is not diagonal if
either r1 or r2 are positive.
By default, the mean is the first linear/additive predictor and the log of the standard deviation is the second linear/additive predictor.
An object of class "vglmff" (see
vglmff-class). The object is used by modelling
functions such as vglm, and vgam.
Harter, H. L. and Moore, A. H. (1966). Iterative maximum-likelihood estimation of the parameters of normal populations from singly and doubly censored samples. Biometrika, 53, 205–213.
This family function only handles a vector or one-column matrix
response. The weights argument, if used, are interpreted
as frequencies, therefore it must be a vector with positive
integer values.
With no censoring at all (the default), it is better (and
equivalent) to use uninormal.
if (FALSE) # Repeat the simulations of Harter & Moore (1966)
SIMS <- 100 # Number of simulations (change this to 1000)
mu.save <- sd.save <- rep(NA, len = SIMS)
#> Error: object 'SIMS' not found
r1 <- 0; r2 <- 4; nn <- 20
for (sim in 1:SIMS) {
y <- sort(rnorm(nn))
y <- y[(1+r1):(nn-r2)] # Delete r1 smallest and r2 largest
fit <- vglm(y ~ 1, double.cens.normal(r1 = r1, r2 = r2))
mu.save[sim] <- predict(fit)[1, 1]
sd.save[sim] <- exp(predict(fit)[1, 2]) # Assumes a log link & ~ 1
}
#> Error: object 'SIMS' not found
c(mean(mu.save), mean(sd.save)) # Should be c(0,1)
#> Error: object 'mu.save' not found
c(sd(mu.save), sd(sd.save))
#> Error: object 'mu.save' not found
# \dontrun{}
# Data from Sarhan & Greenberg (1962); MLEs are mu=9.2606, sd=1.3754
strontium90 <- data.frame(y = c(8.2, 8.4, 9.1, 9.8, 9.9))
fit <- vglm(y ~ 1, double.cens.normal(r1 = 2, r2 = 3, isd = 6),
data = strontium90, trace = TRUE)
#> Iteration 1: loglikelihood = -15.69275
#> Iteration 2: loglikelihood = -14.25529
#> Iteration 3: loglikelihood = -13.50897
#> Iteration 4: loglikelihood = -13.32076
#> Iteration 5: loglikelihood = -13.30763
#> Iteration 6: loglikelihood = -13.3075
#> Iteration 7: loglikelihood = -13.3075
#> Iteration 8: loglikelihood = -13.3075
coef(fit, matrix = TRUE)
#> mu loglink(sd)
#> (Intercept) 9.260564 0.3187177
Coef(fit)
#> mu sd
#> 9.260564 1.375363