expgeometric.RdEstimates the two parameters of the exponential geometric distribution by maximum likelihood estimation.
expgeometric(lscale = "loglink", lshape = "logitlink",
iscale = NULL, ishape = NULL,
tol12 = 1e-05, zero = 1, nsimEIM = 400)Link function for the two parameters.
See Links for more choices.
Numeric. Optional initial values for the scale and shape parameters.
Numeric. Tolerance for testing whether a parameter has value 1 or 2.
The exponential geometric distribution has density function $$f(y; c = scale, s = shape) = (1/c) (1 - s) e^{-y/c} (1 - s e^{-y/c})^{-2}$$ where \(y > 0\), \(c > 0\) and \(s \in (0, 1)\). The mean, \((c (s - 1)/ s) \log(1 - s)\) is returned as the fitted values. Note the median is \(c \log(2 - s)\). Simulated Fisher scoring is implemented.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm
and vgam.
Adamidis, K., Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39, 35–42.
We define scale as the reciprocal of the scale parameter
used by Adamidis and Loukas (1998).
if (FALSE) { # \dontrun{
Scale <- exp(2); shape = logitlink(-1, inverse = TRUE);
edata <- data.frame(y = rexpgeom(n = 2000, scale = Scale, shape = shape))
fit <- vglm(y ~ 1, expgeometric, edata, trace = TRUE)
c(with(edata, mean(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
} # }