logitlink.RdComputes the logit transformation, including its inverse and the first nine derivatives.
logitlink(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
extlogitlink(theta, min = 0, max = 1, bminvalue = NULL,
bmaxvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)Numeric or character. See below for further details.
See Links.
These are boundary values.
For extlogitlink, values of theta less than or
equal to \(A\) or greater than or equal to \(B\) can be
replaced by bminvalue and bmaxvalue.
For extlogitlink,
min gives \(A\),
max gives \(B\), and for out of range values,
bminvalue and bmaxvalue.
Details at Links.
The logit link function is very commonly used for parameters
that lie in the unit interval.
It is the inverse CDF of the logistic distribution.
Numerical values of theta close to 0 or 1 or out of range
result in
Inf, -Inf, NA or NaN.
The extended logit link function extlogitlink
should be used more generally for parameters that lie in the
interval \((A,B)\), say.
The formula is
$$\log((\theta-A)/(B-\theta))$$
and the default values for \(A\) and \(B\) correspond to
the ordinary logit function.
Numerical values of theta close to \(A\)
or \(B\) or out of range result in
Inf, -Inf, NA or NaN.
However these can be replaced by values \(bminvalue\) and
\(bmaxvalue\) first before computing the link function.
For logitlink with deriv = 0, the logit
of theta, i.e., log(theta/(1-theta)) when
inverse = FALSE, and if inverse = TRUE then
exp(theta)/(1+exp(theta)).
For deriv = 1, then the function returns
d eta / d theta as a function of
theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.
Numerical instability may occur when theta is
close to 1 or 0 (for logitlink), or close to \(A\)
or \(B\) for extlogitlink.
One way of overcoming this is to use, e.g., bvalue.
In terms of the threshold approach with cumulative probabilities
for an ordinal response this link function corresponds to the
univariate logistic distribution (see logistic).
p <- seq(0.01, 0.99, by = 0.01)
logitlink(p)
#> [1] -4.59511985 -3.89182030 -3.47609869 -3.17805383 -2.94443898 -2.75153531
#> [7] -2.58668934 -2.44234704 -2.31363493 -2.19722458 -2.09074110 -1.99243016
#> [13] -1.90095876 -1.81528997 -1.73460106 -1.65822808 -1.58562726 -1.51634749
#> [19] -1.45001018 -1.38629436 -1.32492541 -1.26566637 -1.20831121 -1.15267951
#> [25] -1.09861229 -1.04596856 -0.99462258 -0.94446161 -0.89538405 -0.84729786
#> [31] -0.80011930 -0.75377180 -0.70818506 -0.66329422 -0.61903921 -0.57536414
#> [37] -0.53221681 -0.48954823 -0.44731222 -0.40546511 -0.36396538 -0.32277339
#> [43] -0.28185115 -0.24116206 -0.20067070 -0.16034265 -0.12014431 -0.08004271
#> [49] -0.04000533 0.00000000 0.04000533 0.08004271 0.12014431 0.16034265
#> [55] 0.20067070 0.24116206 0.28185115 0.32277339 0.36396538 0.40546511
#> [61] 0.44731222 0.48954823 0.53221681 0.57536414 0.61903921 0.66329422
#> [67] 0.70818506 0.75377180 0.80011930 0.84729786 0.89538405 0.94446161
#> [73] 0.99462258 1.04596856 1.09861229 1.15267951 1.20831121 1.26566637
#> [79] 1.32492541 1.38629436 1.45001018 1.51634749 1.58562726 1.65822808
#> [85] 1.73460106 1.81528997 1.90095876 1.99243016 2.09074110 2.19722458
#> [91] 2.31363493 2.44234704 2.58668934 2.75153531 2.94443898 3.17805383
#> [97] 3.47609869 3.89182030 4.59511985
max(abs(logitlink(logitlink(p), inverse = TRUE) - p)) # 0?
#> [1] 1.110223e-16
p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
logitlink(p) # Has NAs
#> [1] NaN NaN -Inf -4.595120 -3.891820 3.476099 3.891820
#> [8] 4.595120 Inf NaN NaN
logitlink(p, bvalue = .Machine$double.eps) # Has no NAs
#> [1] -36.043653 -36.043653 -36.043653 -4.595120 -3.891820 3.476099
#> [7] 3.891820 4.595120 36.043653 36.043653 36.043653
p <- seq(0.9, 2.2, by = 0.1)
extlogitlink(p, min = 1, max = 2,
bminvalue = 1 + .Machine$double.eps,
bmaxvalue = 2 - .Machine$double.eps) # Has no NAs
#> [1] -36.0436534 -36.0436534 -2.1972246 -1.3862944 -0.8472979 -0.4054651
#> [7] 0.0000000 0.4054651 0.8472979 1.3862944 2.1972246 36.0436534
#> [13] 36.0436534 36.0436534
if (FALSE) par(mfrow = c(2,2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
p <- seq(0.01, 0.99, by = 0.01)
for (d in 0:1) {
myinv <- (d > 0)
matplot(p, cbind( logitlink(p, deriv = d, inv = myinv),
probitlink(p, deriv = d, inv = myinv)), las = 1,
type = "n", col = "purple", ylab = "transformation",
main = if (d == 0) "Some probability link functions"
else "1 / first derivative")
lines(p, logitlink(p, deriv = d, inverse = myinv), col = "limegreen")
lines(p, probitlink(p, deriv = d, inverse = myinv), col = "purple")
lines(p, clogloglink(p, deriv = d, inverse = myinv), col = "chocolate")
lines(p, cauchitlink(p, deriv = d, inverse = myinv), col = "tan")
if (d == 0) {
abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink",
"clogloglink", "cauchitlink"), col = c("limegreen", "purple",
"chocolate", "tan"), lwd = mylwd)
} else
abline(v = 0.5, lty = "dashed")
}
#> Error: object 'mylwd' not found
for (d in 0) {
matplot(y, cbind(logitlink(y, deriv = d, inverse = TRUE),
probitlink(y, deriv = d, inverse = TRUE)), las = 1,
type = "n", col = "purple", xlab = "transformation", ylab = "p",
main = if (d == 0) "Some inverse probability link functions"
else "First derivative")
lines(y, logitlink(y, deriv = d, inv = TRUE), col = "limegreen")
lines(y, probitlink(y, deriv = d, inv = TRUE), col = "purple")
lines(y, clogloglink(y, deriv = d, inv = TRUE), col = "chocolate")
lines(y, cauchitlink(y, deriv = d, inv = TRUE), col = "tan")
if (d == 0) {
abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink", "clogloglink",
"cauchitlink"), col = c("limegreen", "purple",
"chocolate", "tan"), lwd = mylwd)
}
}
#> Error: object 'mylwd' not found
p <- seq(0.21, 0.59, by = 0.01)
plot(p, extlogitlink(p, min = 0.2, max = 0.6), xlim = c(0, 1),
type = "l", col = "black", ylab = "transformation",
las = 1, main = "extlogitlink(p, min = 0.2, max = 0.6)")
par(lwd = 1)
# \dontrun{}