inv.lomaxUC.RdDensity, distribution function, quantile function and random
generation for the inverse Lomax distribution with shape
parameter p and scale parameter scale.
dinv.lomax(x, scale = 1, shape2.p, log = FALSE)
pinv.lomax(q, scale = 1, shape2.p, lower.tail = TRUE, log.p = FALSE)
qinv.lomax(p, scale = 1, shape2.p, lower.tail = TRUE, log.p = FALSE)
rinv.lomax(n, scale = 1, shape2.p)dinv.lomax gives the density,
pinv.lomax gives the distribution function,
qinv.lomax gives the quantile function, and
rinv.lomax generates random deviates.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See inv.lomax, which is the VGAM family
function for estimating the parameters by maximum likelihood
estimation.
The inverse Lomax distribution is a special case of the 4-parameter generalized beta II distribution.
idata <- data.frame(y = rinv.lomax(n = 1000, exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, idata, trace = TRUE, crit = "coef")
#> Iteration 1: coefficients = 2.06389546, 0.96741576
#> Iteration 2: coefficients = 2.06457284, 0.96720349
#> Iteration 3: coefficients = 2.06458900, 0.96719182
#> Iteration 4: coefficients = 2.06458939, 0.96719154
#> Iteration 5: coefficients = 2.06458940, 0.96719154
coef(fit, matrix = TRUE)
#> loglink(scale) loglink(shape2.p)
#> (Intercept) 2.064589 0.9671915
Coef(fit)
#> scale shape2.p
#> 7.882061 2.630546