inv.lomax.RdMaximum likelihood estimation of the 2-parameter inverse Lomax distribution.
Parameter link functions applied to the
(positive) parameters \(b\), and \(p\).
See Links for more choices.
See CommonVGAMffArguments for information.
For imethod = 2 a good initial value for
ishape2.p is needed to obtain a good estimate for
the other parameter.
See CommonVGAMffArguments for information.
See CommonVGAMffArguments for information.
The 2-parameter inverse Lomax distribution is the 4-parameter generalized beta II distribution with shape parameters \(a=q=1\). It is also the 3-parameter Dagum distribution with shape parameter \(a=1\), as well as the beta distribution of the second kind with \(q=1\). More details can be found in Kleiber and Kotz (2003).
The inverse Lomax distribution has density
$$f(y) = p y^{p-1} / [b^p \{1 + y/b\}^{p+1}]$$
for \(b > 0\), \(p > 0\), \(y \geq 0\).
Here, \(b\) is the scale parameter scale,
and p is a shape parameter.
The mean does not seem to exist; the median is returned
as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm,
and vgam.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See the notes in genbetaII.
inv.lomax,
genbetaII,
betaII,
dagum,
sinmad,
fisk,
lomax,
paralogistic,
inv.paralogistic,
simulate.vlm.
idata <- data.frame(y = rinv.lomax(2000, sc = exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, data = idata, trace = TRUE)
#> Iteration 1: loglikelihood = -10404.2582
#> Iteration 2: loglikelihood = -10404.2581
#> Iteration 3: loglikelihood = -10404.2581
fit <- vglm(y ~ 1, inv.lomax(iscale = exp(3)), data = idata,
trace = TRUE, epsilon = 1e-8, crit = "coef")
#> Iteration 1: coefficients = 2.766333785, 0.397908761
#> Iteration 2: coefficients = 2.279391234, 0.764424867
#> Iteration 3: coefficients = 2.085208122, 0.933543841
#> Iteration 4: coefficients = 2.039071289, 0.972541022
#> Iteration 5: coefficients = 2.034820340, 0.975889893
#> Iteration 6: coefficients = 2.034555668, 0.976083985
#> Iteration 7: coefficients = 2.03453974, 0.97609556
#> Iteration 8: coefficients = 2.034538783, 0.976096255
#> Iteration 9: coefficients = 2.034538726, 0.976096296
#> Iteration 10: coefficients = 2.034538722, 0.976096299
coef(fit, matrix = TRUE)
#> loglink(scale) loglink(shape2.p)
#> (Intercept) 2.034539 0.9760963
Coef(fit)
#> scale shape2.p
#> 7.648723 2.654075
summary(fit)
#>
#> Call:
#> vglm(formula = y ~ 1, family = inv.lomax(iscale = exp(3)), data = idata,
#> trace = TRUE, epsilon = 1e-08, crit = "coef")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept):1 2.03454 0.10820 18.80 <2e-16 ***
#> (Intercept):2 0.97610 0.08171 11.95 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Names of linear predictors: loglink(scale), loglink(shape2.p)
#>
#> Log-likelihood: -10404.26 on 3998 degrees of freedom
#>
#> Number of Fisher scoring iterations: 10
#>
#> No Hauck-Donner effect found in any of the estimates
#>