inv.paralogisticUC.RdDensity, distribution function, quantile function and random
generation for the inverse paralogistic distribution with
shape parameters a and p, and scale parameter
scale.
dinv.paralogistic(x, scale = 1, shape1.a, log = FALSE)
pinv.paralogistic(q, scale = 1, shape1.a, lower.tail = TRUE,
log.p = FALSE)
qinv.paralogistic(p, scale = 1, shape1.a, lower.tail = TRUE,
log.p = FALSE)
rinv.paralogistic(n, scale = 1, shape1.a)dinv.paralogistic gives the density,
pinv.paralogistic gives the distribution function,
qinv.paralogistic gives the quantile function, and
rinv.paralogistic generates random deviates.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See inv.paralogistic, which is the VGAM
family function for estimating the parameters by maximum
likelihood estimation.
The inverse paralogistic distribution is a special case of the 4-parameter generalized beta II distribution.
idata <- data.frame(y = rinv.paralogistic(3000, exp(1), sc = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE, ishape1.a = 2.1),
data = idata, trace = TRUE, crit = "coef")
#> Iteration 1: coefficients = 0.97480889, 2.13537682
#> Iteration 2: coefficients = 0.95783366, 2.00234203
#> Iteration 3: coefficients = 0.99310216, 2.02658553
#> Iteration 4: coefficients = 0.98766397, 2.00803677
#> Iteration 5: coefficients = 0.98935571, 2.01119010
#> Iteration 6: coefficients = 0.98906705, 2.01030457
#> Iteration 7: coefficients = 0.98912272, 2.01045821
#> Iteration 8: coefficients = 0.98911241, 2.01042876
#> Iteration 9: coefficients = 0.98911434, 2.01043422
#> Iteration 10: coefficients = 0.98911398, 2.01043320
#> Iteration 11: coefficients = 0.98911405, 2.01043339
coef(fit, matrix = TRUE)
#> loglink(shape1.a) loglink(scale)
#> (Intercept) 0.989114 2.010433
Coef(fit)
#> shape1.a scale
#> 2.688851 7.466553