inv.paralogistic.RdMaximum likelihood estimation of the 2-parameter inverse paralogistic distribution.
See CommonVGAMffArguments for important
information.
Parameter link functions applied to the
(positive) parameters a and scale.
See Links for more choices.
See CommonVGAMffArguments for information.
For imethod = 2 a good initial value for
ishape1.a is needed to obtain a good estimate for
the other parameter.
See CommonVGAMffArguments for information.
See CommonVGAMffArguments for information.
The 2-parameter inverse paralogistic distribution is the 4-parameter generalized beta II distribution with shape parameter \(q=1\) and \(a=p\). It is the 3-parameter Dagum distribution with \(a=p\). More details can be found in Kleiber and Kotz (2003).
The inverse paralogistic distribution has density
$$f(y) = a^2 y^{a^2-1} / [b^{a^2} \{1 + (y/b)^a\}^{a+1}]$$
for \(a > 0\), \(b > 0\), \(y \geq 0\).
Here, \(b\) is the scale parameter scale,
and \(a\) is the shape parameter.
The mean is
$$E(Y) = b \, \Gamma(a + 1/a) \,
\Gamma(1 - 1/a) / \Gamma(a)$$
provided \(a > 1\); these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm,
and vgam.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See the notes in genbetaII.
if (FALSE) { # \dontrun{
idata <- data.frame(y = rinv.paralogistic(3000, exp(1), sc = exp(2)))
fit <- vglm(y ~ 1, inv.paralogistic(lss = FALSE), idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.paralogistic(imethod = 2, ishape1.a = 4),
data = idata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit) } # }