paralogisticUC.RdDensity, distribution function, quantile function and random
generation for the paralogistic distribution with shape parameter
a and scale parameter scale.
dparalogistic(x, scale = 1, shape1.a, log = FALSE)
pparalogistic(q, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
qparalogistic(p, scale = 1, shape1.a, lower.tail = TRUE, log.p = FALSE)
rparalogistic(n, scale = 1, shape1.a)dparalogistic gives the density,
pparalogistic gives the distribution function,
qparalogistic gives the quantile function, and
rparalogistic generates random deviates.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See paralogistic, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
The paralogistic distribution is a special case of the 4-parameter generalized beta II distribution.
pdata <- data.frame(y = rparalogistic(n = 3000, scale = exp(1), exp(2)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE, ishape1.a = 4.1),
data = pdata, trace = TRUE)
#> Iteration 1: loglikelihood = -1269.41035
#> Iteration 2: loglikelihood = -918.540761
#> Iteration 3: loglikelihood = -905.585639
#> Iteration 4: loglikelihood = -886.243364
#> Iteration 5: loglikelihood = -886.090619
#> Iteration 6: loglikelihood = -886.008014
#> Iteration 7: loglikelihood = -886.007876
#> Iteration 8: loglikelihood = -886.00786
#> Iteration 9: loglikelihood = -886.00786
#> Taking a modified step.................
#> Iteration 9 : loglikelihood = -886.00786
coef(fit, matrix = TRUE)
#> loglink(shape1.a) loglink(scale)
#> (Intercept) 2.004334 0.995325
Coef(fit)
#> shape1.a scale
#> 7.421150 2.705604