paralogistic.RdMaximum likelihood estimation of the 2-parameter paralogistic distribution.
See CommonVGAMffArguments for important information.
Parameter link functions applied to the
(positive) parameters \(a\) and scale.
See Links for more choices.
See CommonVGAMffArguments for information.
For imethod = 2 a good initial value for
ishape1.a is needed to obtain good estimates for
the other parameter.
See CommonVGAMffArguments for information.
See CommonVGAMffArguments for information.
The 2-parameter paralogistic distribution is the 4-parameter generalized beta II distribution with shape parameter \(p=1\) and \(a=q\). It is the 3-parameter Singh-Maddala distribution with \(a=q\). More details can be found in Kleiber and Kotz (2003).
The 2-parameter paralogistic has density
$$f(y) = a^2 y^{a-1} / [b^a \{1 + (y/b)^a\}^{1+a}]$$
for \(a > 0\), \(b > 0\), \(y \geq 0\).
Here, \(b\) is the scale parameter scale,
and \(a\) is the shape parameter.
The mean is
$$E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(a - 1/a) / \Gamma(a)$$
provided \(a > 1\); these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm,
and vgam.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See the notes in genbetaII.
if (FALSE) { # \dontrun{
pdata <- data.frame(y = rparalogistic(n = 3000, exp(1), scale = exp(1)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE), data = pdata, trace = TRUE)
fit <- vglm(y ~ 1, paralogistic(ishape1.a = 2.3, iscale = 5),
data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit) } # }