qtplot.gumbel.RdPlots quantiles associated with a Gumbel model.
qtplot.gumbel(object, show.plot = TRUE,
y.arg = TRUE, spline.fit = FALSE, label = TRUE,
R = object@misc$R, percentiles = object@misc$percentiles,
add.arg = FALSE, mpv = object@misc$mpv,
xlab = NULL, ylab = "", main = "",
pch = par()$pch, pcol.arg = par()$col,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
tcol.arg = par()$col, tadj = 1, ...)A VGAM extremes model of the
Gumbel type, produced by modelling functions such as vglm
and vgam, and with a family function that is either
gumbel or gumbelff.
Logical. Plot it? If FALSE no plot will be done.
Logical. Add the raw data on to the plot?
Logical. Use a spline fit through the fitted percentiles? This can be useful if there are large gaps between some values along the covariate.
Logical. Label the percentiles?
See gumbel.
See gumbel.
Logical. Add the plot to an existing plot?
See gumbel.
Caption for the x-axis. See par.
Caption for the y-axis. See par.
Title of the plot. See title.
Plotting character. See par.
Color of the points.
See the col argument of par.
Line type. Line type.
See the lty argument of par.
Color of the lines.
See the col argument of par.
Line width.
See the lwd argument of par.
Color of the text
(if label is TRUE).
See the col argument of par.
Text justification.
See the adj argument of par.
Arguments passed into the plot function
when setting up the entire plot. Useful arguments here include
sub and las.
There should be a single covariate such as time.
The quantiles specified by percentiles are plotted.
The object with a list called qtplot in the post
slot of object.
(If show.plot = FALSE then just the list is returned.)
The list contains components
The percentiles of the response, possibly including the MPV.
The percentiles (small vector of values between 0 and 100.
Unlike gumbel, one cannot have
percentiles = NULL.
ymat <- as.matrix(venice[, paste("r", 1:10, sep = "")])
fit1 <- vgam(ymat ~ s(year, df = 3), gumbel(R = 365, mpv = TRUE),
data = venice, trace = TRUE, na.action = na.pass)
#> VGAM s.vam loop 1 : loglikelihood = -1137.5884
#> VGAM s.vam loop 2 : loglikelihood = -1088.6181
#> VGAM s.vam loop 3 : loglikelihood = -1079.7142
#> VGAM s.vam loop 4 : loglikelihood = -1078.882
#> VGAM s.vam loop 5 : loglikelihood = -1078.7252
#> VGAM s.vam loop 6 : loglikelihood = -1078.713
#> VGAM s.vam loop 7 : loglikelihood = -1078.7071
#> VGAM s.vam loop 8 : loglikelihood = -1078.707
#> VGAM s.vam loop 9 : loglikelihood = -1078.7066
#> VGAM s.vam loop 10 : loglikelihood = -1078.7066
head(fitted(fit1))
#> 95% 99% MPV
#> 1 68.17273 90.04047 112.6121
#> 2 68.46769 90.29102 112.8168
#> 3 68.76404 90.54248 113.0219
#> 4 69.05527 90.78985 113.2240
#> 5 69.33842 91.03085 113.4215
#> 6 69.61724 91.26808 113.6158
if (FALSE) par(mfrow = c(1, 1), bty = "l", xpd = TRUE, las = 1)
qtplot(fit1, mpv = TRUE, lcol = c(1, 2, 5), tcol = c(1, 2, 5),
lwd = 2, pcol = "blue", tadj = 0.4, ylab = "Sea level (cm)")
qtplot(fit1, perc = 97, mpv = FALSE, lcol = 3, tcol = 3,
lwd = 2, tadj = 0.4, add = TRUE) -> saved
head(saved@post$qtplot$fitted)
#> 97%
#> 1 75.11341
#> 2 75.39428
#> 3 75.67638
#> 4 75.95369
#> 5 76.22346
#> 6 76.48908
# \dontrun{}