zibinomial.RdFits a zero-inflated binomial distribution by maximum likelihood estimation.
zibinomial(lpstr0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
ipstr0 = NULL, zero = NULL, multiple.responses = FALSE,
imethod = 1)
zibinomialff(lprob = "logitlink", lonempstr0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "pstr0", "onempstr0"),
ionempstr0 = NULL, zero = "onempstr0",
multiple.responses = FALSE, imethod = 1)Link functions for the parameter \(\phi\)
and the usual binomial probability \(\mu\) parameter.
See Links for more choices.
For the zero-deflated model see below.
See CommonVGAMffArguments and fittedvlm.
Optional initial values for \(\phi\), whose values must lie between 0 and 1. The default is to compute an initial value internally. If a vector then recyling is used.
Corresponding arguments for the other parameterization. See details below.
Logical. Currently it must be FALSE to mean the
function does not handle multiple responses. This
is to remain compatible with the same argument in
binomialff.
See CommonVGAMffArguments for information.
Argument zero changed its default value for version 0.9-2.
These functions are based on
$$P(Y=0) = \phi + (1-\phi) (1-\mu)^N,$$
for \(y=0\), and
$$P(Y=y) = (1-\phi) {N \choose Ny} \mu^{Ny} (1-\mu)^{N(1-y)}.$$
for \(y=1/N,2/N,\ldots,1\). That is, the response is a sample
proportion out of \(N\) trials, and the argument size in
rzibinom is \(N\) here.
The parameter \(\phi\) is the probability of a structural zero,
and it satisfies \(0 < \phi < 1\).
The mean of \(Y\) is \(E(Y)=(1-\phi) \mu\)
and these are returned as the fitted values
by default.
By default, the two linear/additive predictors
for zibinomial()
are \((logit(\phi), logit(\mu))^T\).
The VGAM family function zibinomialff() has a few
changes compared to zibinomial().
These are:
(i) the order of the linear/additive predictors is switched so the
binomial probability comes first;
(ii) argument onempstr0 is now 1 minus
the probability of a structural zero, i.e.,
the probability of the parent (binomial) component,
i.e., onempstr0 is 1-pstr0;
(iii) argument zero has a new default so that the onempstr0
is intercept-only by default.
Now zibinomialff() is generally recommended over
zibinomial().
Both functions implement Fisher scoring.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm
and vgam.
Welsh, A. H., Lindenmayer, D. B. and Donnelly, C. F. (2013). Fitting and interpreting occupancy models. PLOS One, 8, 1–21.
The response variable must have one of the formats described by
binomialff, e.g., a factor or two column matrix or a
vector of sample proportions with the weights argument
specifying the values of \(N\).
To work well, one needs large values of \(N\) and \(\mu>0\), i.e., the larger \(N\) and \(\mu\) are, the better. If \(N = 1\) then the model is unidentifiable since the number of parameters is excessive.
Setting stepsize = 0.5, say, may aid convergence.
Estimated probabilities of a structural zero and an
observed zero are returned, as in zipoisson.
The zero-deflated binomial distribution might
be fitted by setting lpstr0 = identitylink, albeit,
not entirely reliably. See zipoisson
for information that can be applied here. Else
try the zero-altered binomial distribution (see
zabinomial).
Numerical problems can occur.
Half-stepping is not uncommon.
If failure to converge occurs, make use of the argument ipstr0
or ionempstr0,
or imethod.
size <- 10 # Number of trials; N in the notation above
nn <- 200
zdata <- data.frame(pstr0 = logitlink( 0, inverse = TRUE), # 0.50
mubin = logitlink(-1, inverse = TRUE), # Mean of usual binomial
sv = rep(size, length = nn))
zdata <- transform(zdata,
y = rzibinom(nn, size = sv, prob = mubin, pstr0 = pstr0))
with(zdata, table(y))
#> y
#> 0 1 2 3 4 5 6
#> 106 14 25 27 20 5 3
fit <- vglm(cbind(y, sv - y) ~ 1, zibinomialff, data = zdata, trace = TRUE)
#> Iteration 1: loglikelihood = -347.32035
#> Iteration 2: loglikelihood = -383.10832
#> Taking a modified step.
#> Iteration 2 : loglikelihood = -302.03626
#> Iteration 3: loglikelihood = -291.05676
#> Iteration 4: loglikelihood = -289.20817
#> Iteration 5: loglikelihood = -289.20714
#> Iteration 6: loglikelihood = -289.20714
fit <- vglm(cbind(y, sv - y) ~ 1, zibinomialff, data = zdata, trace = TRUE,
stepsize = 0.5)
#> Taking a modified step.
#> Iteration 2 : loglikelihood = -302.03626
#> Taking a modified step.
#> Iteration 3 : loglikelihood = -290.91281
#> Taking a modified step.
#> Iteration 4 : loglikelihood = -289.56623
#> Taking a modified step.
#> Iteration 5 : loglikelihood = -289.29091
#> Taking a modified step.
#> Iteration 6 : loglikelihood = -289.22744
#> Taking a modified step.
#> Iteration 7 : loglikelihood = -289.21214
#> Taking a modified step.
#> Iteration 8 : loglikelihood = -289.20838
#> Taking a modified step.
#> Iteration 9 : loglikelihood = -289.20745
#> Taking a modified step.
#> Iteration 10 : loglikelihood = -289.20722
#> Taking a modified step.
#> Iteration 11 : loglikelihood = -289.20716
#> Taking a modified step.
#> Iteration 12 : loglikelihood = -289.20715
#> Taking a modified step.
#> Iteration 13 : loglikelihood = -289.20714
#> Taking a modified step.
#> Iteration 14 : loglikelihood = -289.20714
coef(fit, matrix = TRUE)
#> logitlink(prob) logitlink(onempstr0)
#> (Intercept) -0.9774094 -0.03968286
Coef(fit) # Useful for intercept-only models
#> prob onempstr0
#> 0.2734061 0.4900806
head(fitted(fit, type = "pobs0")) # Estimate of P(Y = 0)
#> [,1]
#> 1 0.5300189
#> 2 0.5300189
#> 3 0.5300189
#> 4 0.5300189
#> 5 0.5300189
#> 6 0.5300189
head(fitted(fit))
#> [,1]
#> 1 0.133991
#> 2 0.133991
#> 3 0.133991
#> 4 0.133991
#> 5 0.133991
#> 6 0.133991
with(zdata, mean(y)) # Compare this with fitted(fit)
#> [1] 1.34
summary(fit)
#>
#> Call:
#> vglm(formula = cbind(y, sv - y) ~ 1, family = zibinomialff, data = zdata,
#> trace = TRUE, stepsize = 0.5)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept):1 -0.97741 0.07824 -12.493 <2e-16 ***
#> (Intercept):2 -0.03968 0.14835 -0.267 0.789
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Names of linear predictors: logitlink(prob), logitlink(onempstr0)
#>
#> Log-likelihood: -289.2071 on 398 degrees of freedom
#>
#> Number of Fisher scoring iterations: 14
#>
#> No Hauck-Donner effect found in any of the estimates
#>