This article describes creating an OCCDS ADaM. Examples are currently presented and tested in the context of ADAE
. However, the examples could be applied to other OCCDS ADaMs such as ADCM
, ADMH
, ADDV
, etc.
Note: All examples assume CDISC SDTM and/or ADaM format as input unless otherwise specified.
To start, all data frames needed for the creation of ADAE
should be read into the environment. This will be a company specific process. Some of the data frames needed may be AE
and ADSL
For example purpose, the CDISC Pilot SDTM and ADaM datasets —which are included in pharmaversesdtm— are used.
library(admiral)
library(dplyr, warn.conflicts = FALSE)
library(pharmaversesdtm)
library(lubridate)
ae <- pharmaversesdtm::ae
adsl <- admiral::admiral_adsl
ex_single <- admiral::ex_single
ae <- convert_blanks_to_na(ae)
At this step, it may be useful to join ADSL
to your AE
domain as well. Only the ADSL
variables used for derivations are selected at this step. The rest of the relevant ADSL
variables would be added later.
adsl_vars <- exprs(TRTSDT, TRTEDT, TRT01A, TRT01P, DTHDT, EOSDT)
adae <- derive_vars_merged(
ae,
dataset_add = adsl,
new_vars = adsl_vars,
by = exprs(STUDYID, USUBJID)
)
This part derives ASTDTM
, ASTDT
, ASTDY
, AENDTM
, AENDT
, and AENDY
. The function derive_vars_dtm()
can be used to derive ASTDTM
and AENDTM
where ASTDTM
could be company-specific. ASTDT
and AENDT
can be derived from ASTDTM
and AENDTM
, respectively, using function derive_vars_dtm_to_dt()
. derive_vars_dy()
can be used to create ASTDY
and AENDY
.
adae <- adae %>%
derive_vars_dtm(
dtc = AESTDTC,
new_vars_prefix = "AST",
highest_imputation = "M",
min_dates = exprs(TRTSDT)
) %>%
derive_vars_dtm(
dtc = AEENDTC,
new_vars_prefix = "AEN",
highest_imputation = "M",
date_imputation = "last",
time_imputation = "last",
max_dates = exprs(DTHDT, EOSDT)
) %>%
derive_vars_dtm_to_dt(exprs(ASTDTM, AENDTM)) %>%
derive_vars_dy(
reference_date = TRTSDT,
source_vars = exprs(ASTDT, AENDT)
)
#> The default value of `ignore_seconds_flag` will change to "TRUE" in admiral
#> 1.4.0.
See also Date and Time Imputation.
The function derive_vars_duration()
can be used to create the variables ADURN
and ADURU
.
adae <- adae %>%
derive_vars_duration(
new_var = ADURN,
new_var_unit = ADURU,
start_date = ASTDT,
end_date = AENDT
)
The function derive_vars_atc()
can be used to derive ATC Class Variables.
It helps to add Anatomical Therapeutic Chemical class variables from FACM
to ADCM
.
The expected result is the input dataset with ATC variables added.
cm <- tibble::tribble(
~STUDYID, ~USUBJID, ~CMGRPID, ~CMREFID, ~CMDECOD,
"STUDY01", "BP40257-1001", "14", "1192056", "PARACETAMOL",
"STUDY01", "BP40257-1001", "18", "2007001", "SOLUMEDROL",
"STUDY01", "BP40257-1002", "19", "2791596", "SPIRONOLACTONE"
)
facm <- tibble::tribble(
~STUDYID, ~USUBJID, ~FAGRPID, ~FAREFID, ~FATESTCD, ~FASTRESC,
"STUDY01", "BP40257-1001", "1", "1192056", "CMATC1CD", "N",
"STUDY01", "BP40257-1001", "1", "1192056", "CMATC2CD", "N02",
"STUDY01", "BP40257-1001", "1", "1192056", "CMATC3CD", "N02B",
"STUDY01", "BP40257-1001", "1", "1192056", "CMATC4CD", "N02BE",
"STUDY01", "BP40257-1001", "1", "2007001", "CMATC1CD", "D",
"STUDY01", "BP40257-1001", "1", "2007001", "CMATC2CD", "D10",
"STUDY01", "BP40257-1001", "1", "2007001", "CMATC3CD", "D10A",
"STUDY01", "BP40257-1001", "1", "2007001", "CMATC4CD", "D10AA",
"STUDY01", "BP40257-1001", "2", "2007001", "CMATC1CD", "D",
"STUDY01", "BP40257-1001", "2", "2007001", "CMATC2CD", "D07",
"STUDY01", "BP40257-1001", "2", "2007001", "CMATC3CD", "D07A",
"STUDY01", "BP40257-1001", "2", "2007001", "CMATC4CD", "D07AA",
"STUDY01", "BP40257-1001", "3", "2007001", "CMATC1CD", "H",
"STUDY01", "BP40257-1001", "3", "2007001", "CMATC2CD", "H02",
"STUDY01", "BP40257-1001", "3", "2007001", "CMATC3CD", "H02A",
"STUDY01", "BP40257-1001", "3", "2007001", "CMATC4CD", "H02AB",
"STUDY01", "BP40257-1002", "1", "2791596", "CMATC1CD", "C",
"STUDY01", "BP40257-1002", "1", "2791596", "CMATC2CD", "C03",
"STUDY01", "BP40257-1002", "1", "2791596", "CMATC3CD", "C03D",
"STUDY01", "BP40257-1002", "1", "2791596", "CMATC4CD", "C03DA"
)
derive_vars_atc(cm, dataset_facm = facm, id_vars = exprs(FAGRPID))
#> # A tibble: 5 × 9
#> STUDYID USUBJID CMGRPID CMREFID CMDECOD ATC1CD ATC2CD ATC3CD ATC4CD
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 STUDY01 BP40257-1001 14 1192056 PARACETAMOL N N02 N02B N02BE
#> 2 STUDY01 BP40257-1001 18 2007001 SOLUMEDROL D D10 D10A D10AA
#> 3 STUDY01 BP40257-1001 18 2007001 SOLUMEDROL D D07 D07A D07AA
#> 4 STUDY01 BP40257-1001 18 2007001 SOLUMEDROL H H02 H02A H02AB
#> 5 STUDY01 BP40257-1002 19 2791596 SPIRONOLACTO… C C03 C03D C03DA
TRTA
and TRTP
must match at least one value of the character treatment variables in ADSL (e.g., TRTxxA
/TRTxxP
, TRTSEQA
/TRTSEQP
, TRxxAGy
/TRxxPGy
).
An example of a simple implementation for a study without periods could be:
adae <- mutate(adae, TRTP = TRT01P, TRTA = TRT01A)
count(adae, TRTP, TRTA, TRT01P, TRT01A)
#> # A tibble: 2 × 5
#> TRTP TRTA TRT01P TRT01A n
#> <chr> <chr> <chr> <chr> <int>
#> 1 Placebo Placebo Placebo Placebo 10
#> 2 Xanomeline Low Dose Xanomeline Low Dose Xanomeline Low Dose Xanomeline … 6
For studies with periods see the “Visit and Period Variables” vignette.
The function derive_vars_joined()
can be used to derive the last dose date before the start of the event.
ex_single <- derive_vars_dtm(
ex_single,
dtc = EXSTDTC,
new_vars_prefix = "EXST",
flag_imputation = "none"
)
adae <- derive_vars_joined(
adae,
ex_single,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(LDOSEDTM = EXSTDTM),
join_vars = exprs(EXSTDTM),
join_type = "all",
order = exprs(EXSTDTM),
filter_add = (EXDOSE > 0 | (EXDOSE == 0 & grepl("PLACEBO", EXTRT))) & !is.na(EXSTDTM),
filter_join = EXSTDTM <= ASTDTM,
mode = "last"
)
In a similar manner, you could derive the treatment dose and unit at the time of the event. Please note that it is assumed that the dosing intervals do not overlap. If this case occurs, the derive_vars_joined()
call below will throw an error as handling this case is study-specific.
ex_single <- derive_vars_dtm(
ex_single,
dtc = EXENDTC,
new_vars_prefix = "EXEN",
time_imputation = "last",
flag_imputation = "none"
)
adae <- derive_vars_joined(
adae,
ex_single,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(DOSEON = EXDOSE, DOSEU = EXDOSU),
join_vars = exprs(EXSTDTM, EXENDTM),
join_type = "all",
filter_add = (EXDOSE > 0 | (EXDOSE == 0 & grepl("PLACEBO", EXTRT))) & !is.na(EXSTDTM),
filter_join = EXSTDTM <= ASTDTM & (ASTDTM <= EXENDTM | is.na(EXENDTM))
)
The variables ASEV
, AREL
, and ATOXGR
can be added using simple dplyr::mutate()
assignments, if no imputation is required.
To derive the treatment emergent flag TRTEMFL
, one can call derive_var_trtemfl()
. In the example below, we use 30 days in the flag derivation.
adae <- adae %>%
derive_var_trtemfl(
trt_start_date = TRTSDT,
trt_end_date = TRTEDT,
end_window = 30
)
To derive on-treatment flag (ONTRTFL
) in an ADaM dataset with a single occurrence date, we use derive_var_ontrtfl()
.
The expected result is the input dataset with an additional column named ONTRTFL
with a value of "Y"
or NA
.
If you want to also check an end date, you could add the end_date
argument. Note that in this scenario you could set span_period = TRUE
if you want occurrences that started prior to drug intake, and was ongoing or ended after this time to be considered as on-treatment.
bds1 <- tibble::tribble(
~USUBJID, ~ADT, ~TRTSDT, ~TRTEDT,
"P01", ymd("2020-02-24"), ymd("2020-01-01"), ymd("2020-03-01"),
"P02", ymd("2020-01-01"), ymd("2020-01-01"), ymd("2020-03-01"),
"P03", ymd("2019-12-31"), ymd("2020-01-01"), ymd("2020-03-01")
)
derive_var_ontrtfl(
bds1,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT
)
#> # A tibble: 3 × 5
#> USUBJID ADT TRTSDT TRTEDT ONTRTFL
#> <chr> <date> <date> <date> <chr>
#> 1 P01 2020-02-24 2020-01-01 2020-03-01 Y
#> 2 P02 2020-01-01 2020-01-01 2020-03-01 Y
#> 3 P03 2019-12-31 2020-01-01 2020-03-01 NA
bds2 <- tibble::tribble(
~USUBJID, ~ADT, ~TRTSDT, ~TRTEDT,
"P01", ymd("2020-07-01"), ymd("2020-01-01"), ymd("2020-03-01"),
"P02", ymd("2020-04-30"), ymd("2020-01-01"), ymd("2020-03-01"),
"P03", ymd("2020-03-15"), ymd("2020-01-01"), ymd("2020-03-01")
)
derive_var_ontrtfl(
bds2,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT,
ref_end_window = 60
)
#> # A tibble: 3 × 5
#> USUBJID ADT TRTSDT TRTEDT ONTRTFL
#> <chr> <date> <date> <date> <chr>
#> 1 P01 2020-07-01 2020-01-01 2020-03-01 NA
#> 2 P02 2020-04-30 2020-01-01 2020-03-01 Y
#> 3 P03 2020-03-15 2020-01-01 2020-03-01 Y
bds3 <- tibble::tribble(
~ADTM, ~TRTSDTM, ~TRTEDTM, ~TPT,
"2020-01-02T12:00", "2020-01-01T12:00", "2020-03-01T12:00", NA,
"2020-01-01T12:00", "2020-01-01T12:00", "2020-03-01T12:00", "PRE",
"2019-12-31T12:00", "2020-01-01T12:00", "2020-03-01T12:00", NA
) %>%
mutate(
ADTM = ymd_hm(ADTM),
TRTSDTM = ymd_hm(TRTSDTM),
TRTEDTM = ymd_hm(TRTEDTM)
)
derive_var_ontrtfl(
bds3,
start_date = ADTM,
ref_start_date = TRTSDTM,
ref_end_date = TRTEDTM,
filter_pre_timepoint = TPT == "PRE"
)
#> # A tibble: 3 × 5
#> ADTM TRTSDTM TRTEDTM TPT ONTRTFL
#> <dttm> <dttm> <dttm> <chr> <chr>
#> 1 2020-01-02 12:00:00 2020-01-01 12:00:00 2020-03-01 12:00:00 NA Y
#> 2 2020-01-01 12:00:00 2020-01-01 12:00:00 2020-03-01 12:00:00 PRE NA
#> 3 2019-12-31 12:00:00 2020-01-01 12:00:00 2020-03-01 12:00:00 NA NA
The function derive_var_extreme_flag()
can help derive variables such as AOCCIFL
, AOCCPIFL
, AOCCSIFL
, and AOCCzzFL
.
If grades were collected, the following can be used to flag first occurrence of maximum toxicity grade.
adae <- adae %>%
restrict_derivation(
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(USUBJID),
order = exprs(desc(ATOXGR), ASTDTM, AESEQ),
new_var = AOCCIFL,
mode = "first"
),
filter = TRTEMFL == "Y"
)
Similarly, ASEV
can also be used to derive the occurrence flags, if severity is collected. In this case, the variable will need to be recoded to a numeric variable. Flag first occurrence of most severe adverse event:
adae <- adae %>%
restrict_derivation(
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(USUBJID),
order = exprs(
as.integer(factor(
ASEV,
levels = c("DEATH THREATENING", "SEVERE", "MODERATE", "MILD")
)),
ASTDTM, AESEQ
),
new_var = AOCCIFL,
mode = "first"
),
filter = TRTEMFL == "Y"
)
For deriving query variables SMQzzNAM
, SMQzzCD
, SMQzzSC
, SMQzzSCN
, or CQzzNAM
the derive_vars_query()
function can be used. As input it expects a queries dataset, which provides the definition of the queries. See Queries dataset documentation for a detailed description of the queries dataset. The create_query_data()
function can be used to create queries datasets.
The following example shows how to derive query variables for Standardized MedDRA Queries (SMQs) in ADAE.
queries <- admiral::queries
adae1 <- tibble::tribble(
~USUBJID, ~ASTDTM, ~AETERM, ~AESEQ, ~AEDECOD, ~AELLT, ~AELLTCD,
"01", "2020-06-02 23:59:59", "ALANINE AMINOTRANSFERASE ABNORMAL",
3, "Alanine aminotransferase abnormal", NA_character_, NA_integer_,
"02", "2020-06-05 23:59:59", "BASEDOW'S DISEASE",
5, "Basedow's disease", NA_character_, 1L,
"03", "2020-06-07 23:59:59", "SOME TERM",
2, "Some query", "Some term", NA_integer_,
"05", "2020-06-09 23:59:59", "ALVEOLAR PROTEINOSIS",
7, "Alveolar proteinosis", NA_character_, NA_integer_
)
adae_query <- derive_vars_query(dataset = adae1, dataset_queries = queries)
Similarly to SMQ, the derive_vars_query()
function can be used to derive Standardized Drug Groupings (SDG).
sdg <- tibble::tribble(
~PREFIX, ~GRPNAME, ~GRPID, ~SCOPE, ~SCOPEN, ~SRCVAR, ~TERMCHAR, ~TERMNUM,
"SDG01", "Diuretics", 11, "BROAD", 1, "CMDECOD", "Diuretic 1", NA,
"SDG01", "Diuretics", 11, "BROAD", 1, "CMDECOD", "Diuretic 2", NA,
"SDG02", "Costicosteroids", 12, "BROAD", 1, "CMDECOD", "Costicosteroid 1", NA,
"SDG02", "Costicosteroids", 12, "BROAD", 1, "CMDECOD", "Costicosteroid 2", NA,
"SDG02", "Costicosteroids", 12, "BROAD", 1, "CMDECOD", "Costicosteroid 3", NA,
)
adcm <- tibble::tribble(
~USUBJID, ~ASTDTM, ~CMDECOD,
"01", "2020-06-02 23:59:59", "Diuretic 1",
"02", "2020-06-05 23:59:59", "Diuretic 1",
"03", "2020-06-07 23:59:59", "Costicosteroid 2",
"05", "2020-06-09 23:59:59", "Diuretic 2"
)
adcm_query <- derive_vars_query(adcm, sdg)
ADSL
variables
If needed, the other ADSL
variables can now be added:
adae <- adae %>%
derive_vars_merged(
dataset_add = select(adsl, !!!negate_vars(adsl_vars)),
by_vars = exprs(STUDYID, USUBJID)
)
The function derive_var_obs_number()
can be used for deriving ASEQ
variable to ensure the uniqueness of subject records within the dataset.
For example, there can be multiple records present in ADCM
for a single subject with the same ASTDTM
and CMSEQ
variables. But these records still differ at ATC level:
adcm <- tibble::tribble(
~USUBJID, ~ASTDTM, ~CMSEQ, ~CMDECOD, ~ATC1CD, ~ATC2CD, ~ATC3CD, ~ATC4CD,
"BP40257-1001", "2013-07-05 UTC", "14", "PARACETAMOL", "N", "N02", "N02B", "N02BE",
"BP40257-1001", "2013-08-15 UTC", "18", "SOLUMEDROL", "D", "D10", "D10A", "D10AA",
"BP40257-1001", "2013-08-15 UTC", "18", "SOLUMEDROL", "D", "D07", "D07A", "D07AA",
"BP40257-1001", "2013-08-15 UTC", "18", "SOLUMEDROL", "H", "H02", "H02A", "H02AB",
"BP40257-1002", "2012-12-15 UTC", "19", "SPIRONOLACTONE", "C", "C03", "C03D", "C03DA"
)
adcm_aseq <- adcm %>%
derive_var_obs_number(
by_vars = exprs(USUBJID),
order = exprs(ASTDTM, CMSEQ, ATC1CD, ATC2CD, ATC3CD, ATC4CD),
new_var = ASEQ,
check_type = "error"
)
Adding labels and attributes for SAS transport files is supported by the following packages:
metacore: establish a common foundation for the use of metadata within an R session.
metatools: enable the use of metacore objects. Metatools can be used to build datasets or enhance columns in existing datasets as well as checking datasets against the metadata.
xportr: functionality to associate all metadata information to a local R data frame, perform data set level validation checks and convert into a transport v5 file(xpt).
NOTE: All these packages are in the experimental phase, but the vision is to have them associated with an End to End pipeline under the umbrella of the pharmaverse. An example of applying metadata and perform associated checks can be found at the pharmaverse E2E example.