This function calculates least-squares mean differences using the 'emmeans' package using the following
emmeans::emmeans(object = <regression model>, specs = ~ <primary covariate>) |>
emmeans::contrast(method = "pairwise") |>
summary(infer = TRUE, level = <confidence level>)
The arguments data
, formula
, method
, method.args
, package
are used
to construct the regression model via cardx::construct_model()
.
ard_emmeans_mean_difference(
data,
formula,
method,
method.args = list(),
package = "base",
response_type = c("continuous", "dichotomous"),
conf.level = 0.95,
primary_covariate = getElement(attr(stats::terms(formula), "term.labels"), 1L)
)
(data.frame
/survey.design
)
a data frame or survey design object
(formula
)
a formula
(string
)
string of function naming the function to be called, e.g. "glm"
.
If function belongs to a library that is not attached, the package name
must be specified in the package
argument.
(named list
)
named list of arguments that will be passed to method
.
Note that this list may contain non-standard evaluation components.
If you are wrapping this function in other functions, the argument
must be passed in a way that does not evaluate the list, e.g.
using rlang's embrace operator {{ . }}
.
(string
)
a package name that will be temporarily loaded when function
specified in method
is executed.
(string
)
string indicating whether the model outcome is 'continuous'
or 'dichotomous'
. When 'dichotomous'
, the call to emmeans::emmeans()
is
supplemented with argument regrid="response"
.
(scalar numeric
)
confidence level for confidence interval. Default is 0.95
.
(string
)
string indicating the primary covariate (typically the dichotomous treatment variable).
Default is the first covariate listed in the formula.
ARD data frame
ard_emmeans_mean_difference(
data = mtcars,
formula = mpg ~ am + cyl,
method = "lm"
)
#> {cards} data frame: 8 x 10
#> group1 variable variable_level stat_name stat_label stat
#> 1 am contrast am0 - am1 estimate Mean Dif… -2.567
#> 2 am contrast am0 - am1 std.error std.error 1.291
#> 3 am contrast am0 - am1 df df 29
#> 4 am contrast am0 - am1 conf.low CI Lower… -5.208
#> 5 am contrast am0 - am1 conf.high CI Upper… 0.074
#> 6 am contrast am0 - am1 p.value p-value 0.056
#> 7 am contrast am0 - am1 conf.level CI Confi… 0.95
#> 8 am contrast am0 - am1 method method Least-sq…
#> ℹ 4 more variables: context, fmt_fn, warning, error
ard_emmeans_mean_difference(
data = mtcars,
formula = vs ~ am + mpg,
method = "glm",
method.args = list(family = binomial),
response_type = "dichotomous"
)
#> {cards} data frame: 8 x 10
#> group1 variable variable_level stat_name stat_label stat
#> 1 am contrast am0 - am1 estimate Mean Dif… 0.61
#> 2 am contrast am0 - am1 std.error std.error 0.229
#> 3 am contrast am0 - am1 df df Inf
#> 4 am contrast am0 - am1 conf.low CI Lower… 0.162
#> 5 am contrast am0 - am1 conf.high CI Upper… 1.059
#> 6 am contrast am0 - am1 p.value p-value 0.008
#> 7 am contrast am0 - am1 conf.level CI Confi… 0.95
#> 8 am contrast am0 - am1 method method Least-sq…
#> ℹ 4 more variables: context, fmt_fn, warning, error