Plot QT against RR

eda_qt_rr_plot(
  data,
  rr_col,
  qt_col,
  id_col = NULL,
  trt_col = NULL,
  conf_int = 0.9,
  model_type = c("lm", "lme"),
  show_model_results = TRUE,
  method = "REML",
  remove_rr_iiv = FALSE,
  style = list()
)

Arguments

data

A data frame containing C-QT analysis dataset

rr_col

An unquoted column name for RR measurements

qt_col

An unquoted column name for QT measurements

id_col

An unquoted column name for subject ID

trt_col

An unquoted column name for treatment group

conf_int

Numeric confidence interval level (default: 0.9)

model_type

Lm or lme, which model to fit for showing on plot

show_model_results

A bool for showing regression slope on plot.

method

Method for nlme::lme fitting (ML or REML)

remove_rr_iiv

A boolean for removing IIV on RR slope

style

A named list of arguments passed to style_plot()

Value

a plot of the input QT against RR

Examples

data_proc <- preprocess(cqtkit_data_verapamil)

eda_qt_rr_plot(data_proc, RR, QT, ID, model_type = "lme")
#> variance-covariance issues detected, try running again with method = 'REML'
#> If issues persist, try removing IIV.
#> Error in intervals.lme(fit, conf_int): cannot get confidence intervals on var-cov components: Non-positive definite approximate variance-covariance
#>  Consider 'which = "fixed"'