All functions

add_error_bars_to_plot()

adds errorbars to a plot

add_horizontal_references()

adds horizontal reference lines to plot

add_secondary_data()

adds secondary data to a plot

compute_conc_for_upper_pred()

Computes the concentration needed for a upper conf_int prediction of the threshold value.

compute_contrast_observations()

Compute contrast observations for prediction plots

compute_dataset_simulation()

Simulates a dataset used to fit the model.

compute_delta_hrblm()

computes delta HR BL Mean

compute_delta_qtcbblm()

Computes Baseline Mean QTCB

compute_delta_qtcfblm()

Computes Baseline Mean QTCF

compute_deltas()

Computes delta variables RR, QTCF, HR, etc

compute_ecg_param_summary()

Generates a tibble of summary of QTc, dQTc and ddQTc over time stratified by dose

compute_enGRI()

Exposure Normalized GRI computation

compute_exposure_predictions()

Predicts dQTC over range of concentration values with contrast. To help keep the predictions quick, the concentration values to predict at are done at on order of magnitude of concentration values, if max(conc) = 7340, then by = 100

compute_fit_results()

computes all fitted results and residuals for GOF plots

compute_grouped_mean_sd()

computes a the mean and standard deviation of the dependent variable data in DV_col grouped by time and dose.

compute_high_qtc_sub()

Computes the number of subjects with QTc > 450, 500 as well as deltaQTc > 30, 60

compute_hysteresis_labeller()

Gets labeller for hysteresis_loop_plot. Should most likely not be used by user

compute_lm_fit_df()

Fits a linear model of input dataframe

compute_lme_slope_df()

Takes the slope from a lme model and its confidence interval

compute_loess_linear_r_squared()

Computes R-squared and Adjusted R-squared of loess regression compared to linear regression. Used for determining linearity of C-QT data

compute_model_fit_parameters()

Converts tTable of summary(model_fit) to tibble and adds CIs.

compute_pk_parameters()

Generates pk parameters Cmax and Tmax for exporsure predictions.

compute_potential_hysteresis()

Detects the pressence of hysteresis

compute_qtcb_qtcf()

Computes QTCF and QTCB from qt_col and rr_col and QTCFBL and QTCBBL from qtbl_col and rrbl_col

compute_quantiles_obs_df()

returns a dataframe of quantiles of concentrations and deltaQTcs

compute_study_summary()

Creates a dataframe summarizing number of subjects in each trtreatment group

compute_summary_statistics_of_simulations()

Wrapper for calling compute_dataset_simulation nruns time and computing summary statsitics of the simulations

cqtkit_data_bl_dofetilide

Baseline data for dofetilide C-QT study

cqtkit_data_bl_quinidine

Baseline data for quinidine C-QT study

cqtkit_data_bl_ranolazine

Baseline data for ranolazine C-QT study

cqtkit_data_bl_verapamil

Baseline data for verapamil C-QT study

cqtkit_data_dofetilide

C-QT analysis dataset for dofetilide with significant QTc effect (~38 ms prolongation)

cqtkit_data_quinidine

C-QT analysis dataset for quinidine with significant QTc effect (~50 ms prolongation)

cqtkit_data_ranolazine

C-QT analysis dataset for ranolazine with moderate QTc effect (~14 ms prolongation)

cqtkit_data_verapamil

C-QT analysis dataset for verapamil with minimal QTc effect (~8 ms prolongation)

eda_hysteresis_loop_plot()

Hysteresis loop plot to visually inspect hysteresis

eda_mean_dv_over_time()

Plots mean dependent variable over time

eda_qt_rr_plot()

Plot QT against RR

eda_qtc_comparison_plot()

plots different corrections of QT against RR to compare which to use.

eda_quantiles_plot()

plots the observed decile-decile scatter plot of x-data vs y-data with linear regression.

eda_scatter_with_regressions()

plots scatter plot with with linear and loess regressions. Can be used to check for linearity.

fit_prespecified_model()

generates nlme::lme model either prespecified or without TRT and TIME.

fit_qtc_linear_model()

Fits QT(c) data to linear mixed effects model with fixed effects of intercept and RR slope, with random effects on intercept and slope.

gof_concordance_plots()

Concordance plots between population and individual predictions

gof_plots()

Makes goodness of fit plots

gof_qq_plots()

Plots QQ plot of WRES and IWRES

gof_residuals_plots()

Plots residuals vs predicted dQTCF and concentration

gof_residuals_time_boxplots()

plots boxplots of residuals over Nominal Times

gof_residuals_trt_boxplots()

generates boxplots for treatment group

gof_vpc_plot()

Performs a visual predictive check and plots the results

predict_with_exposure_plot()

Plots model predictions with therapeutic and supra therapeutic Cmax

predict_with_observations_plot()

Plots predictions of the model with observed values

predict_with_quantiles_plot()

Plots predictions and 90% CI

preprocess()

Pre-processes data Computes QTcB, QTcF, deltaQTcF, deltaQTcB, deltaHR, deltaQTcB Baseline Mean, deltaQTcF Baseline Mean, deltaHR Baseline Mean

set_style()

Creates a style list for eda graphing functions

style_plot()

Styles a plot with provided colors and labels

tabulate_ecg_param_summary()

Generates a gt table of summary of QTc, dQTc and ddQTc over time stratified by dose

tabulate_exposure_predictions()

Tablulates exposure predictions at therapeutic and supratherapuetic Cmax.

tabulate_high_qtc_sub()

Tabulates number of high QTc/deltaQTc observations.

tabulate_model_fit_parameters()

Generates table of model parameter esitmates and statistics

tabulate_pk_parameters()

Converts pk_parameters df into gt table for printing

tabulate_study_summary()

Creates a gt table of study summary for number of subjects in each grouping