Parameter sets

parameters()

Information on tuning parameters within an object

update(<parameters>)

Update a single parameter in a parameter set

lower_limit() upper_limit()

Limits for the range of predictions

range_validate() range_get() range_set()

Tools for working with parameter ranges

value_validate() value_seq() value_sample() value_transform() value_inverse() value_set()

Tools for working with parameter values

Grid creation

grid_regular() grid_random()

Create grids of tuning parameters

grid_space_filling()

Space-filling parameter grids

Parameter objects for preprocessing

all_neighbors()

Parameter to determine which neighbors to use

freq_cut() unique_cut()

Near-zero variance parameters

harmonic_frequency()

Harmonic Frequency

initial_umap() values_initial_umap

Initialization method for UMAP

max_times() min_times()

Word frequencies for removal

max_tokens()

Maximum number of retained tokens

min_dist()

Parameter for the effective minimum distance between embedded points

min_unique()

Number of unique values for pre-processing

num_breaks()

Number of cut-points for binning

num_hash() signed_hash()

Text hashing parameters

num_runs()

Number of Computation Runs

num_tokens()

Parameter to determine number of tokens in ngram

over_ratio() under_ratio()

Parameters for class-imbalance sampling

prior_slab_dispersion() prior_mixture_threshold()

Bayesian PCA parameters

prop_terms()

Proportion of top predictors

token() values_token

Token types

trim_amount()

Amount of Trimming

validation_set_prop()

Proportion of data used for validation

vocabulary_size()

Number of tokens in vocabulary

weight()

Parameter for "double normalization" when creating token counts

weight_scheme() values_weight_scheme

Term frequency weighting methods

window_size()

Parameter for the moving window size

Parameter objects for modeling

activation() activation_2() values_activation

Activation functions between network layers

adjust_deg_free()

Parameters to adjust effective degrees of freedom

class_weights()

Parameters for class weights for imbalanced problems

cost() svm_margin()

Support vector machine parameters

deg_free()

Degrees of freedom (integer)

degree() degree_int() spline_degree() prod_degree()

Parameters for exponents

dist_power()

Minkowski distance parameter

dropout() epochs() hidden_units() hidden_units_2() batch_size()

Neural network parameters

Laplace()

Laplace correction parameter

learn_rate()

Learning rate

mixture()

Mixture of penalization terms

momentum()

Gradient descent momentum parameter

mtry() mtry_long()

Number of randomly sampled predictors

mtry_prop()

Proportion of Randomly Selected Predictors

neighbors()

Number of neighbors

num_clusters()

Number of Clusters

num_comp() num_terms()

Number of new features

num_knots()

Number of knots (integer)

penalty()

Amount of regularization/penalization

predictor_prop()

Proportion of predictors

prune_method() values_prune_method

MARS pruning methods

rate_initial() rate_largest() rate_reduction() rate_steps() rate_step_size() rate_decay() rate_schedule() values_scheduler

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.

rbf_sigma() scale_factor() kernel_offset()

Kernel parameters

regularization_method() values_regularization_method

Estimation methods for regularized models

select_features()

Parameter to enable feature selection

smoothness()

Kernel Smoothness

stop_iter()

Early stopping parameter

summary_stat() values_summary_stat

Rolling summary statistic for moving windows

surv_dist() values_surv_dist

Parametric distributions for censored data

survival_link() values_survival_link

Survival Model Link Function

target_weight()

Amount of supervision parameter

threshold()

General thresholding parameter

trees() min_n() sample_size() sample_prop() loss_reduction() tree_depth() prune() cost_complexity()

Parameter functions related to tree- and rule-based models.

weight_func() values_weight_func

Kernel functions for distance weighting

Parameter objects for specific model engines

prior_terminal_node_coef() prior_terminal_node_expo() prior_outcome_range()

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.

conditional_min_criterion() values_test_type conditional_test_type() values_test_statistic conditional_test_statistic()

Parameters for possible engine parameters for partykit models

confidence_factor() no_global_pruning() predictor_winnowing() fuzzy_thresholding() rule_bands()

Parameters for possible engine parameters for C5.0

extrapolation() unbiased_rules() max_rules()

Parameters for possible engine parameters for Cubist

max_nodes()

Parameters for possible engine parameters for randomForest

max_num_terms()

Parameters for possible engine parameters for earth models

num_leaves()

Possible engine parameters for lightbgm

regularization_factor() regularize_depth() significance_threshold() lower_quantile() splitting_rule() ranger_class_rules ranger_reg_rules ranger_split_rules num_random_splits()

Parameters for possible engine parameters for ranger

scale_pos_weight() penalty_L2() penalty_L1()

Parameters for possible engine parameters for xgboost

shrinkage_correlation() shrinkage_variance() shrinkage_frequencies() diagonal_covariance()

Parameters for possible engine parameters for sda models

Parameter objects for post-processing

buffer()

Buffer size

lower_limit() upper_limit()

Limits for the range of predictions

cal_method_class() cal_method_reg() values_cal_cls values_cal_reg

Methods for model calibration

Finalizing parameters

finalize() get_p() get_log_p() get_n_frac() get_n_frac_range() get_n() get_rbf_range()

Functions to finalize data-specific parameter ranges

Developer tools

encode_unit()

Class for converting parameter values back and forth to the unit range

new_quant_param() new_qual_param()

Tools for creating new parameter objects

parameters_constr()

Construct a new parameter set object

unknown() is_unknown() has_unknowns()

Placeholder for unknown parameter values