twCoefLogitnormN.Rd
Estimating coefficients from a vector of quantiles and percentiles (non-vectorized).
the quantile values
the probabilities for which the quantiles were specified
method of optimization (see optim
)
starting parameters
if TRUE, the full output of optim is returned instead of only entry par
further parameters passed to optim, e.g. control = list(maxit = 1000)
named numeric vector with estimated parameters of the logitnormal distribution.
names: c("mu","sigma")
# experiment of re-estimation the parameters from generated observations
thetaTrue <- c(mu = 0.8, sigma = 0.7)
obsTrue <- rlogitnorm(thetaTrue["mu"],thetaTrue["sigma"], n = 500)
obs <- obsTrue + rnorm(100, sd = 0.05) # some observation uncertainty
plot(density(obsTrue),col = "blue"); lines(density(obs))
# re-estimate parameters based on the quantiles of the observations
(theta <- twCoefLogitnorm( median(obs), quantile(obs,probs = 0.9), perc = 0.9))
#> mu sigma.90%
#> 0.8255915 0.7859063
# add line of estimated distribution
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2])
lines( dx ~ x, col = "orange")