Return Final lasso coefficients after finding optimal t
lassoCoefficients(
fit,
varsVec,
covarsVec,
catvarsVec,
constraint = 1e-08,
stratVar = NULL,
...
)
nlmixr2 fit.
character vector of variables that need to be added
character vector of covariates that need to be added
character vector of categorical covariates that need to be added
theta cutoff. below cutoff then the theta will be fixed to zero
A variable to stratify on for cross-validation
Other parameters to be passed to optimalTvaluelasso
return data frame of final lasso coefficients
if (FALSE) { # \dontrun{
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1
fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0))
varsVec <- c("ka","cl","v")
covarsVec <- c("WT")
catvarsVec <- c("SEX")
# Lasso coefficients:
lassoDf <- lassoCoefficients(fit, varsVec, covarsVec, catvarsVec, constraint=1e-08, stratVar = NULL)
} # }