All functions

adaptivelassoCoefficients()

Return Adaptive lasso coefficients after finding optimal t

addCatCovariates()

Make dummy variable cols and updated covarsVec

addorremoveCovariate()

Add covariate

adjustedlassoCoefficients()

Return Adjusted adaptive lasso coefficients after finding optimal t

bootplot()

Produce delta objective function for boostrap

bootstrapFit()

Bootstrap nlmixr2 fit

buildcovInfo()

Build covInfo list from varsVec and covarsVec

buildupatedUI()

Build updated from the covariate and variable vector list

fixedControl()

Control options for fixed-value likelihood profiling

foldgen()

Stratified cross-validation fold generator function, inspired from the caret

horseshoeSummardf()

Create Horseshoe summary posterior estimates

knit_print(<nlmixr2FitCore>) knit_print(<rxUi>)

Extract the equations from an nlmixr2/rxode2 model to produce a 'LaTeX' equation.

lassoCoefficients()

Return Final lasso coefficients after finding optimal t

lassoSummardf()

Create Lasso summary posterior estimates

llpControl()

Control options for log-likelihood profiling

normalizedData()

Function to return data of normalized covariates

optimUnisampling()

Sample from uniform distribution by optim

preconditionFit()

Linearly re-parameterize the model to be less sensitive to rounding errors

profile(<nlmixr2FitCore>)

Perform likelihood profiling on nlmixr2 focei fits

profileFixed() profileFixedSingle()

Estimate the objective function values for a model while fixing defined parameter values

profileLlp()

Profile confidence intervals with log-likelihood profiling

profileNlmixr2FitCoreRet()

Give the output data.frame for a single model for profile.nlmixr2FitCore

regularmodel()

Regular lasso model

theoFitOde

Example single dose Theophylline ODE model