All functions

blq_trans() blq_log_trans()

A transform for ggplot2 with data that may be below the lower limit of quantification

breaks_blq_general()

Generate breaks for measurements below the limit of quantification

calc_derived() calc_derived_1cpt() calc_derived_2cpt() calc_derived_3cpt()

Calculate derived pharmacokinetic parameters for a 1-, 2-, or 3-compartment linear model.

calc_sd_1cmt() calc_sd_1cmt_linear_bolus() calc_sd_1cmt_linear_oral_1_lag() calc_sd_1cmt_linear_infusion() calc_sd_1cmt_linear_oral_0() calc_sd_1cmt_linear_oral_1() calc_sd_1cmt_linear_oral_0_lag()

Calculate C(t) for a 1-compartment linear model

calc_sd_2cmt() calc_sd_2cmt_linear_bolus() calc_sd_2cmt_linear_oral_1_lag() calc_sd_2cmt_linear_infusion() calc_sd_2cmt_linear_oral_0_lag() calc_sd_2cmt_linear_oral_1() calc_sd_2cmt_linear_oral_0()

Calculate C(t) for a 2-compartment linear model

calc_sd_3cmt() calc_sd_3cmt_linear_bolus() calc_sd_3cmt_linear_oral_1_lag() calc_sd_3cmt_linear_infusion() calc_sd_3cmt_linear_oral_0() calc_sd_3cmt_linear_oral_0_lag() calc_sd_3cmt_linear_oral_1()

Calculate C(t) for a 3-compartment linear model

calc_ss_1cmt() calc_ss_1cmt_linear_bolus() calc_ss_1cmt_linear_infusion() calc_ss_1cmt_linear_oral_0() calc_ss_1cmt_linear_oral_0_lag() calc_ss_1cmt_linear_oral_1_lag() calc_ss_1cmt_linear_oral_1()

Calculate C(t) for a 1-compartment linear model at steady-state

calc_ss_2cmt() calc_ss_2cmt_linear_bolus() calc_ss_2cmt_linear_infusion() calc_ss_2cmt_linear_oral_0() calc_ss_2cmt_linear_oral_1_lag() calc_ss_2cmt_linear_oral_0_lag() calc_ss_2cmt_linear_oral_1()

Calculate C(t) for a 2-compartment linear model at steady-state

calc_ss_3cmt() calc_ss_3cmt_linear_bolus() calc_ss_3cmt_linear_oral_1_lag() calc_ss_3cmt_linear_infusion() calc_ss_3cmt_linear_oral_0() calc_ss_3cmt_linear_oral_0_lag() calc_ss_3cmt_linear_oral_1()

Calculate C(t) for a 3-compartment linear model at steady-state

count_na()

Count the number of NA values in a vector.

dgr_table()

Generate a summary table of descriptive data for every individual in a dataset suitable for tabulation in a report.

estimate_lloq()

Estimate the lower limit of quantification (LLOQ) from a vector

fmt_signif()

Format a number with the correct number of significant digits and trailing zeroes.

ftrans_blq_linear() ftrans_blq_log()

Forward transformation for linear BLQ data

gcv()

Calculate a geometric coefficient of variation.

gcv_convert()

Convert geometric variance or standard deviation to a geometric coefficient of variation

get_auc()

Calculate the area under the curve (AUC) for each subject over the time interval for dependent variables (dv) using the trapezoidal rule.

get_est_table()

Create a table of model parameter estimates from a NONMEM output object.

get_omega()

Extract variability parameter estimates from a NONMEM output object.

get_probinfo()

Extract problem and estimation information from a NONMEM output object.

get_shrinkage()

Extract shrinkage estimates from a NONMEM output object.

get_sigma()

Extract residual variability parameter estimates from a NONMEM output object.

get_theta()

Extract structural model parameter estimates and associated information from a NONMEM output object.

gm()

Calculate geometric mean

itrans_blq_linear() itrans_blq_log()

Inverse transformation for linear BLQ data

label_blq()

Label axes with censoring labels for BLQ

pcv()

Calculate percentage coefficient of variation

pk_curve()

Provide concentration-time curves.

plot_dist()

Plot a distribution as a hybrid containing a halfeye, a boxplot and jittered points.

plot_nmprogress()

Plot NONMEM parameter estimation by iteration.

plot_scm()

Visualize PsN SCM output.

read_nm()

Read NONMEM 7.2+ output into a list of lists.

read_nm_all()

Read all NONMEM files for a single NONMEM run.

read_nm_multi_table()

Read (single or) multiple NONMEM tables from a single file

read_nm_std_ext()

Read a standard NONMEM extension file

read_nmcov()

Read in the NONMEM variance-covariance matrix.

read_nmext()

Read NONMEM output into a list.

read_nmtables()

Reads NONMEM output tables.

read_scm()

Read PsN SCM output into a format suitable for further use.

rnm()

Read NONMEM 7.2+ output into an R object.

sample_omega()

Sample from the multivariate normal distribution using the OMEGA variance-covariance matrix to generate new sets of simulated ETAs from NONMEM output.

sample_sigma()

Sample from the multivariate normal distribution using the SIGMA variance-covariance matrix to generate new sets of simulated EPSILONs from NONMEM output.

sample_uncert()

Sample from the multivariate normal distribution to generate new sets of parameters from NONMEM output.

table_rtf()

Read NONMEM output into a list.