Skip to contents

Conducts groupwise tests of association on a three-way contingency table.

Usage

groupwiseCMH(
  x,
  group = 3,
  fisher = TRUE,
  gtest = FALSE,
  chisq = FALSE,
  method = "fdr",
  correct = "none",
  digits = 3,
  ...
)

Arguments

x

A three-way contingency table.

group

The dimension of the table to use as the grouping variable. Will be 1, 2, or 3.

fisher

If TRUE, conducts Fisher exact test.

gtest

If TRUE, conducts G test of association.

chisq

If TRUE, conducts Chi-square test of association.

method

The method to use to adjust p-values. See ?p.adjust.

correct

The correction to apply to the G test. See GTest.

digits

The number of digits for numbers in the output.

...

Other arguments passed to chisq.test or GTest.

Value

A data frame of groups, test used, p-values, and adjusted p-values.

Details

If more than one of fisher, gtest, or chisq is set to TRUE, only one type of test of association will be conducted.

Author

Salvatore Mangiafico, mangiafico@njaes.rutgers.edu

Examples

### Post-hoc for Cochran-Mantel-Haenszel test
data(AndersonBias)
Table = xtabs(Count ~ Gender + Result + County,
              data=AndersonBias)
ftable(Table)
#>               County Bloom Cobblestone Dougal Heimlich
#> Gender Result                                         
#> Female Pass              9          11      9       15
#>        Fail              5           4      7        8
#> Male   Pass              7           9     19       14
#>        Fail             17          21      9       17
mantelhaen.test(Table)
#> 
#> 	Mantel-Haenszel chi-squared test with continuity correction
#> 
#> data:  Table
#> Mantel-Haenszel X-squared = 6.7314, df = 1, p-value = 0.009473
#> alternative hypothesis: true common odds ratio is not equal to 1
#> 95 percent confidence interval:
#>  1.248399 4.260003
#> sample estimates:
#> common odds ratio 
#>          2.306119 
#> 
groupwiseCMH(Table,
             group   = 3,
             fisher  = TRUE,
             gtest   = FALSE,
             chisq   = FALSE,
             method  = "fdr",
             correct = "none",
             digits  = 3)
#> 
#>         Group   Test p.value  adj.p
#> 1       Bloom Fisher  0.0468 0.0936
#> 2 Cobblestone Fisher  0.0102 0.0408
#> 3      Dougal Fisher  0.5230 0.5230
#> 4    Heimlich Fisher  0.1750 0.2330