Pairwise tests of independence for nominal data
pairwiseNominalIndependence.RdConducts pairwise tests for a 2-dimensional matrix, in which at at least one dimension has more than two levels, as a post-hoc test. Conducts Fisher exact, Chi-square, or G-test.
Usage
pairwiseNominalIndependence(
x,
compare = "row",
fisher = TRUE,
gtest = TRUE,
chisq = TRUE,
method = "fdr",
correct = "none",
yates = FALSE,
stats = FALSE,
cramer = FALSE,
digits = 3,
...
)Arguments
- x
A two-way contingency table. At least one dimension should have more than two levels.
- compare
If
"row", treats the rows as the grouping variable. If"column", treats the columns as the grouping variable.- fisher
If
"TRUE", conducts fisher exact test.- gtest
If
"TRUE", conducts G-test.- chisq
If
"TRUE", conducts Chi-square test of association.- method
The method to adjust multiple p-values. See
stats::p.adjust.- correct
The correction method to pass to
DescTools::GTest.- yates
Passed to
correctinstats::chisq.test.- stats
If
"TRUE", includes the Chi-square value and degrees of freedom for Chi-square tests, and the G value.- cramer
If
"TRUE", includes an effect size, Cramer's V in the output.- digits
The number of significant digits in the output.
- ...
Additional arguments, passed to
stats::fisher.test,DescTools::GTest, orstats::chisq.test.
Acknowledgments
My thanks to Carole Elliott of Kings Park & Botanic Gardens for suggesting the inclusion on the chi-square statistic and degrees of freedom in the output.
Author
Salvatore Mangiafico, mangiafico@njaes.rutgers.edu
Examples
### Independence test for a 4 x 2 matrix
data(Anderson)
fisher.test(Anderson)
#>
#> Fisher's Exact Test for Count Data
#>
#> data: Anderson
#> p-value = 0.000668
#> alternative hypothesis: two.sided
#>
Anderson = Anderson[(c("Heimlich", "Bloom", "Dougal", "Cobblestone")),]
PT = pairwiseNominalIndependence(Anderson,
fisher = TRUE,
gtest = FALSE,
chisq = FALSE,
cramer = TRUE)
PT
#> Comparison p.Fisher p.adj.Fisher Cramer.V
#> 1 Heimlich : Bloom 0.740000 0.74000 0.0475
#> 2 Heimlich : Dougal 0.013100 0.02620 0.3930
#> 3 Heimlich : Cobblestone 0.000994 0.00596 0.4980
#> 4 Bloom : Dougal 0.037600 0.05640 0.3530
#> 5 Bloom : Cobblestone 0.003960 0.01190 0.4600
#> 6 Dougal : Cobblestone 0.720000 0.74000 0.1160
cldList(comparison = PT$Comparison,
p.value = PT$p.adj.Fisher,
threshold = 0.05)
#> Group Letter MonoLetter
#> 1 Heimlich a a
#> 2 Bloom ab ab
#> 3 Dougal bc bc
#> 4 Cobblestone c c