All functions

adapt()

Adaptive phase for JAGS models

coda.samples()

Generate posterior samples in mcmc.list format

list.factories() set.factory()

Advanced control over JAGS

dic.samples()

Generate penalized deviance samples

`-` diffdic()

Differences in penalized deviance

jags.model()

Create a JAGS model object

load.module() unload.module() list.modules()

Dynamically load JAGS modules

coef(<jags>) variable.names(<jags>) list.samplers()

Functions for manipulating jags model objects

jags.samples()

Generate posterior samples

jags.version()

JAGS version

LINE

Linear regression example

summary(<mcarray>) print(<mcarray>) as.mcmc.list(<mcarray>)

Objects for representing MCMC output

parallel.seeds()

Get initial values for parallel RNGs

read.jagsdata() read.bugsdata()

Read data files for jags models

read.data()

Deprecated Functions in the rjags package

rjags-package rjags

Bayesian graphical models using MCMC

update(<jags>)

Update jags models