The damage carrots data set from Phelps (1982) was used by McCullagh and Nelder (1989) in order to illustrate diagnostic techniques because of the presence of an outlier. In a soil experiment trial with three blocks, eight levels of insecticide were applied and the carrots were tested for insect damage.

data(carrots, package="robustbase")

Format

A data frame with 24 observations on the following 4 variables.

success

integer giving the number of carrots with insect damage.

total

integer giving the total number of carrots per experimental unit.

logdose

a numeric vector giving log(dose) values (eight different levels only).

block

factor with levels B1 to B3

Source

Phelps, K. (1982). Use of the complementary log-log function to describe doseresponse relationships in insecticide evaluation field trials.
In R. Gilchrist (Ed.), Lecture Notes in Statistics, No. 14. GLIM.82: Proceedings of the International Conference on Generalized Linear Models; Springer-Verlag.

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Eva Cantoni and Elvezio Ronchetti (2001); JASA, and
Eva Cantoni (2004); JSS, see glmrob

Examples

data(carrots)
str(carrots)
#> 'data.frame':	24 obs. of  4 variables:
#>  $ success: int  10 16 8 6 9 9 1 2 17 10 ...
#>  $ total  : int  35 42 50 42 35 42 32 28 38 40 ...
#>  $ logdose: num  1.52 1.64 1.76 1.88 2 2.12 2.24 2.36 1.52 1.64 ...
#>  $ block  : Factor w/ 3 levels "B1","B2","B3": 1 1 1 1 1 1 1 1 2 2 ...
plot(success/total ~ logdose, data = carrots, col = as.integer(block))

coplot(success/total ~ logdose | block, data = carrots)


## Classical glm
Cfit0 <- glm(cbind(success, total-success) ~ logdose + block,
             data=carrots, family=binomial)
summary(Cfit0)
#> 
#> Call:
#> glm(formula = cbind(success, total - success) ~ logdose + block, 
#>     family = binomial, data = carrots)
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)   2.0226     0.6501   3.111  0.00186 ** 
#> logdose      -1.8174     0.3439  -5.285 1.26e-07 ***
#> blockB2       0.3009     0.1991   1.511  0.13073    
#> blockB3      -0.5424     0.2318  -2.340  0.01929 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 83.344  on 23  degrees of freedom
#> Residual deviance: 39.976  on 20  degrees of freedom
#> AIC: 128.61
#> 
#> Number of Fisher Scoring iterations: 4
#> 

## Robust Fit (see help(glmrob)) ....