The summary method for class "glmrob" summarizes robust fits of (currently only discrete) generalized linear models.

# S3 method for class 'glmrob'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
# S3 method for class 'glmrob'
vcov(object, ...)

# S3 method for class 'summary.glmrob'
print(x, digits = max(3, getOption("digits") - 3),
      symbolic.cor = x$symbolic.cor,
      signif.stars = getOption("show.signif.stars"), ...)

Arguments

object

an object of class "glmrob", usually, a result of a call to glmrob.

correlation

logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.

symbolic.cor

logical. If TRUE, print the correlations in a symbolic form (see symnum) rather than as numbers.

...

further arguments passed to or from other methods.

x

an object of class "summary.glrob".

digits

the number of digits to use for printing.

signif.stars

logical indicating if the P-values should be visualized by so called “significance stars”.

Details

summary.glmrob returns an object of class "summary.glmrob".

Its print() method tries to be smart about formatting the coefficients, standard errors, etc, and gives “significance stars” if signif.stars is TRUE (as per default when options where not changed).

Value

The function summary.glmrob computes and returns a list of summary statistics of the robustly fitted linear model given in object. The following elements are in the list:

...

FIXME

Author

Andreas Ruckstuhl

See also

glmrob; the generic summary and also summary.glm.

Examples

data(epilepsy)
Rmod <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
               data = epilepsy, method= "Mqle")
ss <- summary(Rmod)
ss ## calls print.summary.glmrob()
#> 
#> Call:  glmrob(formula = Ysum ~ Age10 + Base4 * Trt, family = poisson,      data = epilepsy, method = "Mqle") 
#> 
#> 
#> Coefficients:
#>                     Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)         2.045101   0.152178  13.439  < 2e-16 ***
#> Age10               0.159912   0.046837   3.414 0.000640 ***
#> Base4               0.084966   0.004116  20.641  < 2e-16 ***
#> Trtprogabide       -0.332755   0.086301  -3.856 0.000115 ***
#> Base4:Trtprogabide  0.011970   0.004903   2.441 0.014631 *  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> Robustness weights w.r * w.x: 
#>  27 weights are ~= 1. The remaining 32 ones are summarized as
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.0829  0.3443  0.5625  0.5384  0.7608  0.9638 
#> 
#> Number of observations: 59 
#> Fitted by method ‘Mqle’  (in 14 iterations)
#> 
#> (Dispersion parameter for poisson family taken to be 1)
#> 
#> No deviance values available 
#> Algorithmic parameters: 
#>    acc    tcc 
#> 0.0001 1.3450 
#> maxit 
#>    50 
#> test.acc 
#>   "coef" 
#> 
str(ss) ## internal STRucture of summary object
#> List of 19
#>  $ call         : language glmrob(formula = Ysum ~ Age10 + Base4 * Trt, family = poisson, data = epilepsy,      method = "Mqle")
#>  $ terms        :Classes 'terms', 'formula'  language Ysum ~ Age10 + Base4 * Trt
#>   .. ..- attr(*, "variables")= language list(Ysum, Age10, Base4, Trt)
#>   .. ..- attr(*, "factors")= int [1:4, 1:4] 0 1 0 0 0 0 1 0 0 0 ...
#>   .. .. ..- attr(*, "dimnames")=List of 2
#>   .. .. .. ..$ : chr [1:4] "Ysum" "Age10" "Base4" "Trt"
#>   .. .. .. ..$ : chr [1:4] "Age10" "Base4" "Trt" "Base4:Trt"
#>   .. ..- attr(*, "term.labels")= chr [1:4] "Age10" "Base4" "Trt" "Base4:Trt"
#>   .. ..- attr(*, "order")= int [1:4] 1 1 1 2
#>   .. ..- attr(*, "intercept")= int 1
#>   .. ..- attr(*, "response")= int 1
#>   .. ..- attr(*, ".Environment")=<environment: 0x5655073c8150> 
#>   .. ..- attr(*, "predvars")= language list(Ysum, Age10, Base4, Trt)
#>   .. ..- attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "numeric" "factor"
#>   .. .. ..- attr(*, "names")= chr [1:4] "Ysum" "Age10" "Base4" "Trt"
#>  $ family       :List of 13
#>   ..$ family    : chr "poisson"
#>   ..$ link      : chr "log"
#>   ..$ linkfun   :function (mu)  
#>   ..$ linkinv   :function (eta)  
#>   ..$ variance  :function (mu)  
#>   ..$ dev.resids:function (y, mu, wt)  
#>   ..$ aic       :function (y, n, mu, wt, dev)  
#>   ..$ mu.eta    :function (eta)  
#>   ..$ initialize:  expression({  if (any(y < 0))  stop("negative values not allowed for the 'Poisson' family")  n <- rep.int(1, nobs| __truncated__
#>   ..$ validmu   :function (mu)  
#>   ..$ valideta  :function (eta)  
#>   ..$ simulate  :function (object, nsim)  
#>   ..$ dispersion: num 1
#>   ..- attr(*, "class")= chr "family"
#>  $ iter         : int 14
#>  $ control      :List of 4
#>   ..$ acc     : num 1e-04
#>   ..$ test.acc: chr "coef"
#>   ..$ maxit   : num 50
#>   ..$ tcc     : num 1.34
#>  $ method       : chr "Mqle"
#>  $ residuals    : Named num [1:59] -0.507 -0.447 -0.579 -0.816 1.549 ...
#>   ..- attr(*, "names")= chr [1:59] "1" "2" "3" "4" ...
#>  $ fitted.values: Named num [1:59] 16 15.8 13.1 16.3 44.6 ...
#>   ..- attr(*, "names")= chr [1:59] "1" "2" "3" "4" ...
#>  $ w.r          : num [1:59] 1 1 1 1 0.868 ...
#>  $ w.x          : num [1:59] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ deviance     : NULL
#>  $ df.residual  : NULL
#>  $ null.deviance: NULL
#>  $ df.null      : NULL
#>  $ df           : NULL
#>  $ aliased      : Named logi [1:5] FALSE FALSE FALSE FALSE FALSE
#>   ..- attr(*, "names")= chr [1:5] "(Intercept)" "Age10" "Base4" "Trtprogabide" ...
#>  $ coefficients : num [1:5, 1:4] 2.045 0.16 0.085 -0.333 0.012 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:5] "(Intercept)" "Age10" "Base4" "Trtprogabide" ...
#>   .. ..$ : chr [1:4] "Estimate" "Std. Error" "z value" "Pr(>|z|)"
#>  $ dispersion   : num 1
#>  $ cov.scaled   : num [1:5, 1:5] 0.023158 -0.006473 -0.000209 -0.00396 0.000064 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:5] "(Intercept)" "Age10" "Base4" "Trtprogabide" ...
#>   .. ..$ : chr [1:5] "(Intercept)" "Age10" "Base4" "Trtprogabide" ...
#>  - attr(*, "class")= chr "summary.glmrob"